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The Suydam criterion is extended to the case of toroidal geometry. The problem is solved in two ways. 
In the first flute disturbances that correspond to large azimuthal numbers (m » 1) are considered. In 
the second, use is made of a general criterion, due to Solov'ev, for instability of disturbances localized 
in the directiQn of the normal to the magnetic surfaces. Both methods yield the same criterion which is 
simpler and more compact than the criterion previously obtained by Kadomtsev and Pogutse. 

1. INTRODUCTION 

IT is well known that the condition for the stability of 
an equilibrium plasma {Vp = j X B, j =curl B) against 
flute disturbances is expressed in cylindrical geometry 
by the Suydam criterion[lJ 

1(q')2 2p' -- +-->0. 4 q rB82 
(1) 

Here p{r) is the plasma pressure, Bs(r) the longitudi­
nal magnetic field, q(r) = const • rBs!Be, and Be is 
the azimuthal field produced by the longitudinal current. 
In a closed plasma pinch of length L it is convenient to 
put const = 2JT/L, and then q is the coefficient of sta­
bility margin against helical disturbances. [aJ To stabi­
lize helical disturbances it is necessary to satisfy the 
condition q > 1. Here, as noted by Kadomtsev and Po­
gutse/3J the curvature of the torus is comparable with 
the curvature of the force lines, and additional terms 
appear in the criterion {1). The stability condition ob­
tained in [3 J is 

(2) 

where R = L/21T is the radius of the torus. The term 
quadratic in the pressure corresponds to the balloon 
instability mode. The term containing the derivative of 
the specific volume U = dV/d~ of the longitudinal flux 
~ plays the stabilizing role, since there is a "magnet­
ic well"[4J in the toroidal plasma pinch (U'/U < 0). 

We show in this paper that besides the effects al­
lowed in [3J and caused by the curvature of the torus, it 
is necessary to take into account one more effect, con­
nected with the azimuthal variation of the pitch of the 
force line. It turns out that in the case of a round torus 
all the three components connected with the curvature 
combine and the plasma stability condition takes the 
simple form 

1(q')2 2p' - - +--(1-q2)>0. 
4 q rB.2 

{3) 

We see that to stabilize the flute disturbance of a round 
toroidal plasma pinch it is sufficient to satisfy the con­
dition 

q2 > 1. (4) 

This result was obtained earlier by Ware[SJ on the 
basis of the energy principle. The condition q 2 > 1 was 
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obtained in [a, 71 by using a general criterion for local 
instability in the vicinity of the magnetic axis. It follows 
from the criterion (3) that the condition q2 > 1 ensures 
stability in the entire region of the plasma pinch. 

The difference between the criteria obtained in [3J 
and [SJ did not exclude, in principle, the possibility that 
the local disturbances, investigated on the basis of the 
energy principle, and the flute disturbances investigated 
by the small-oscillation method, are not fully equiva­
lent. In this connection, we use both methods of analyz­
ing the instability. In Sec. 3 we investigate by the 
small-oscillation method the flute instability corre­
sponding to large azimuthal numbers m » 1. In Sec. 4 
we use a general criterion for the stability of radially 
localized disturbance; this criterion was obtained by 
Solov'ev by greatly simplifying the criterion obtained 
by Mercier, Bineau, and also by Green and Johnson. 
Both methods lead to the same criterion (3). 

2. COORDINATE SYSTEM 

In both calculation methods, we use a curvilinear co­
ordinate system a, e, ({J in which the magnetic surfaces 
coincide with the coordinates a = const, and the azi­
muthal angle variable e is chosen such that the force 
lines on the surface a= const are "straight," i.e., the 
ratio of the contravariant components B2/B3 on a given 
surface is independent of e and qJ. [BJ In such a coordi­
nate system, the contravariant components of the mag­
netic field and of the current density are given by the 
formulas 

B1 = 0, B2 = x'(a) /2nYg, B3 = «<>'(a) /2ny"g, (5) 

j1 = 0. j2 = [ l'(a)- :; ]j2n Yi: j3 = [l'(a)+ :; ]j2nl'i (6) 

Here x and ~ are the transverse and longitudinal 
fluxes of the magnetic field, I and J are the transverse 
and longitudinal currents bounded by the given magnetic 
surface a = const, and g is the determinant of the met­
ric tensor, g = det gik· The currents I and J are con­
nected with the fluxes x and ~ by the relations 

2" !It 

l= s B2d8, 1= -S B,drp, (7) 
0 

where B2 = g22 B2 + g23 B3 and B3 = g23 B2 + g33 B3 are 
the covariant components of the magnetic field. Besides 
the longitudinal and azimuthal currents, it is possible 
to define the average azimuthal and longitudinal mag­
netic fields 
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Be == J I 2:n:a, B, == l I 2:n:R. (B) 

The conditions for the plasma equilibrium V' p = j x B 
reduces in this coordinate system to the two relations 

p'V' = I'<D'- l'x', 

8v av -
x' --+ <D'- = p'(V'- 4:n:2 l'g), 

ae a'P 

(9) 

(10) 

where V(a) is the volume bounded by the magnetic sur­
face a = const. By definition, 

2n 2n 

V'(a)= ~ ~ l'gdf)d<p. (11) 
0 0 

To find the metric coefficients of the coordinate sys­
tern, we shall use the method of expansion in the curva­
ture. We shall assume that the plasma torus is axisym­
metric (olocp = 0). We start from a quasicylindrical co­
ordinate system, in which the square of the element of 
length is 

diP= dp2 + p2d0l2 + R2(1- kp cos Ol) 2d<p2, (12) 

where k = 1/R is the curvature of the magnetic axis. 
We denote by Ha) the displacement of the center of the 
cross section of the magnetic surface a = const rela­
tive to the magnetic axis, and change over to polar co­
ordinates p0 , w0 connected with the displaced center: 

p cos Ol = Po cos Olo +~(a), 

p sin (J) = Po sin Olo. 
(13) 

The equation of the magnetic surface in the new coordi­
nate system, p0 = p0 (a, w0 ) and the azimuthal angle w0 

are presented in the form of the expansion 

Po= a+ a(a) cos 28 + ... , 
Olo = 8 + 1.-(a) sin 8 + f!(a) sin28 + .... 

(14) 

Substituting the foregoing expressions into the for­
mula for d Z2, we get: 

dl• = g11da2 + 2g,.dad8 + gzzd82 + g,,d<p'. 

In the approximation quadratic in the curvature, the co­
efficients gik and rg are equal to 

g11 = 1 + 25' cos 8 + ~'2 + (a21.-12 - 2£'1.-- 2£'f.'a) sin2 8 + 2a' cos 28, 
g12 = (a2f.'- a£') sin 8 + (a2fl'- 2a- a£'1. + a2f.f.' I 2) sin 28, 

g22 = a2 [1 + 2f.cos8 +1.2 1 2 + (2al a+ 4fl + 1.2 1 2) cos28], 
gaa = fl2(1- kacos8- k£ + kaf.sin2 8) 2, 

g,, = g,, = 0, 

yg = aR [ 1 - k£ - ka£' I 2 + (A + £' - ka) cos 8 

+(a'+ l.f + 2fl +a/ a- kat.- ka£' I 2) cos 28], 

(15) 

We present also the following useful formulas for the 
coefficients giklrg: 

gu 1 { ka£' , 
-:;;=- 1+k~+~-+(£ -J.+ka)cos8+(J.-ka) 2 cos2 8 
,g aR 2 

ka£') } + kat.- + - 2- cos 28 , 

g,. 1 [ ( " t') . 8 -==- a" -b sm 
yg R 

I a'f.'f. ) J + \ a2~1'- 2a - a£' f. + - 2- + ka31.-'- ka2£' sin 28 , 

g22 a [ ka£' £'2 k2a2 
--=.=- 1 +k6---+-+--+(t.- 6' +ka)cos8 
l'g R ~ 2 2 

( a s'2 k2a2 f;'ka ) J + a+2fl+2+-2----2 - a' -f.£' +kat. cos28 , 

g"-'=- 1+kat.+-b-+ b (ka+J.+s')cos8 
R { kat' (f.+ t')' 

'(g a 2 2 (16) 

[ a kar (J.+s') 2 ] '} - a'+ l.s' + 2!-1 +a- - 2-- 2 cos 28 . 

To determine the coefficients A. and 11, we shall use 
relations (7). Assuming axial symmetry and recogniz­
ing that g23 = 0, we obtain from (7) 

J(a) = x'(a) (gdl'g)o, !(a) = -<D'(a) (gaa llg). (17) 

Here and henceforth, the zero subscript denotes aver­
aging with respect to e: 

I g':...) == ~ 2f ( g':...) d8. (18) 
\ '(g 0 2:n: 0 l'g 

No such averaging is performed in the second formula, 
which relates I with <I>'. It follows hence that in the 
chosen coordinate system the ratio g33 I rg does not 
depend on e: 

(19) 

Consequently, A. is determined from the condition that 
the coefficient of cos e in the expression for g33 I rg 
vanish: 

f.= -S'- ka, (20) 

and 11 is determined from the condition that the coeffi­
cient of cos 2 e in the same expression vanish. We 
note that the parameters A., /l, ... in the considered 
axial-symmetry case could be chosen such that the co­
ordinate system would be orthogonal. However, such a 
choice would offer no noticeable advantage. 

The characteristics of the magnetic surfaces ~, a, 
... are best obtained by comparing the expression de­
rived for j 3 from formulas (6) and (10) with the expres­
sion for j 3 from the equation curl B = j: 

P = ~ ( aB. _ aB, )= _1 -{1 gZ2x' )'- x' !_ ( g~~)\ (21) 
yg aa 88 2:n:'(g \ -yg 88' yg J 

Equating these expressions, we get 

I J gz,ff~ l'- ]' -l(g,J-{i)lao = 4n'p' ( g22) [(fg)o --y"g]. (22) 
l (g,,jyg)ol (gzz/l'g)o l 1/g o 

In the first approximation in the curvature, this yields 
an expression for ~ l9 l 

, , ;1 2Ba' ) ( 2ap') 6 +s ,---+- =k t-- --.. 
'. a Ba Ba2 

(23) 

In the quadratic approximation, equating the coefficients 
of cos 2 e, we can obtain an equation for a. The inte­
gration constants of the obtained equations are deter­
mined from the boundary conditions. We shall assume 
that the plasma pinch is in a conducting jacket of round 
cross section. In this case a ~ k2 • The terms of the 
type a cos 2e drop out, as a result of averaging, in the 
derivation of the stability criterion that takes into ac­
count effects quadratic in the curvature. We shall 
therefore not need a. 
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We present also an expression for the specific vol­
ume U = V'/<P', which we shall need later on. Accord­
ing to ( 11) and (17), we have for V' and <I>' 

U = ~= 4n2 ('}'g)o (g""-) = 4n2R2 
( 1 -x), (24) 

11>' I -}'g o I 

where K is the relative depth of the magnetic well, 
equal by definition to 

x = 1 _(g""-) nr"ilo. 
-}'g o R' 

(2 ~>) 

In the approximation quadratic in the curvature we have 

x = 2k\; + kas' + k"'a2 /2. (26) 

The stability criterion contains not the relative depth of 
the well, but its derivative K', which contains the sec­
ond derivative of the displacement ~. We can eliminate 
('with the aid of (23). We then get 

2p' f q' B ') x' = - ~ k2a2 + 2k2a + 2ka£' \-- ~s_ . 
Ba2 q B, (27) 

3. DERIVATION OF THE STABILITY CRITERION BY 
THE METHOD OF SMALL OSCILLATIONS 

To obtain the stability criterion by the method of 
small oscillations, it is sufficient to consider, as was 
done in [2 J, the equilibrium equations at the start of the 
disturbance. The possibility of production of a new 
equilibrium state with a disturbed magnetic field cor­
responds, within the framework of ideal magnetohydro­
dynamics, to instability of the initial state. 

We choose the equilibrium-equation system in the 
form[3 J 

BVa+[ Y' (;,)B Jvp = 0, 

BVp = 0, 

aJ32 = B rot B, 

divB = 0. 

(28) 

(29) 
(30) 
(31) 

The initial state corresponds to an axisymmetrical to.­
roidal plasma pinch. We assume the longitudinal field 
to be sufficiently strong, Bs/Be ~ 1/ka » 1, which cor­
responds to the conditions that exist in toroidal systems 
of the Tokamak type. The perturbed longitudinal field 
B; ~ BeBe/Bs is in this case small compared with the 
disturbed azimuthal field, and can be neglected in the 
equation div B* = 0. Consequently, the disturbance of 
the magnetic field can be expressed in terms of one 
function zp: 

B'1 = ~ a.p; 
-}'gi16 

From the linearized Eq. (30) we obtain the following 
expression for the perturbed function a*: 

• B, {. a ( g,, il"¢) g" o'"¢ 2 g., il'¢ 

(32) 

a =- Y!JIBr aa yg aa + yg Oe'- y;ta;;iie 

+I!__ (gil)-!_( g'= 'l] O"ljl- a.p !__ (g,g_)- k!!.!_ ii'>P_ l_ 
(33) 

Las y-g aa yg ae aa ae yg B, arpae f 

Substituting the perturbed quantities B* \ B* 2 , and a* 
into the linearized equations (28) and (29) we obtain a 
system of two differential equations for the functions 
1/J and p*. 

We seek the solution of this system in the form 

"ljJ = ~ "ljl,exp[i(m + 1)8- inq>], 
l 

assuming that the harmonics 1/J z decrease with the num­
ber l, and represent the disturbance of the pressure in 
similar form 

p' = ~ p," exp[i(m + 1)8- inrp]. 
l 

Eliminating the harmonics pJ from the equations, we 
write the equation for the determination of 1/J z in the 
form 

I( U' B,' 2Ba2 ) 11np' 
y,[t.,"ljl,- s' (<'>,-tiJJi-1 + t.,+1"¢lY-1)]- L U + B, + aB,2 y~iJ~i 

( p' +B,B,' )' fA l f 1 [( by1 )' bn J - --- ~- (m+l)"¢1-)- --~ ---
Be Ba _ ~B, "\'1--1 . ay,_, 

[ ka(m+l-1)-h3 ]} + y, a' ( m + L - 1) IJJH 

-{ ~[(_/JJI_)'-~] + y1 [ka(m+Z+1)+h3J~_} (m+Z+1)1JJ,+1 
B, "\'t+1 ay,+! a2 

-{ ~ ~ + !'... [ h1 - ( _!l_ h2 + _!__ £') (m + l- 1)]} ¢;_, 
B, "\'H a 2 2 (34) 

-{--~~ + .!:[h1 + ( _!_h,-~ 5') (m -t-l + 1) ]!.1 ljJ 1~1 = 0. 
B, "\'1+1 a 2 2 

Here 
1 d d (m+l) 2 

t.,=--a-----, 
a da da a2 

B' x.' 
11 = ]j:l = 11>' 

y, = (m +I) 11- n, b = p' /Be, 
h1 = 1h(a£" + !;' + ka), h, =a£"+ ka, 
h, = 1/za2(;"' + a£" - !;'- 1/,ka. 

Equation (34) differs from the corresponding equation 
of [SJ in the presence of a number of additional terms 
with harmonics 1/J z- 1 and 1/J z + 1· These terms appear 
when the toroidality is taken into account in the first 
term of (28). In order to obtain in (34) a term contain­
ing U' it is necessary to take into account in the second 
term of (28) the quantities that are quadratic in the 
curvature, and to use formula (26). The result of the 
calculations then coincides with the corresponding ex­
pression obtained in [3 J by integrating along the force 
line. 

To investigate local flute -type disturbances (m » 1), 
which can develop near the singular point a = a0 , where 
the longitudinal wave number y 0 = mJl. ~ n vanishes, we 
use the system (34) with l = 0 and ± 1. Let x = a0 ~ a 
be the distance from the singular point; we can then 
write for small x 

Yo= m11'x, "\'-1 = -11. 

In the case of practical interest, 2p/Be :S 1, to take 
into account the quantities quadratic in the curvature it 
is sufficient to retain only the fundamental and second 
harmonics. We shall solve this system near the singu­
lar point. To this end we apply the operator ~0 to 
Eq. (34) for the fundamental frequency. We write out 
the resultant expression, neglecting the terms that are 
insignificant when m » 1 and when x is small: 
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We have introduced here the notation ~l = 1/!z /yz. With 
the aid of Eq. (34) for the second harmonics we can ob­
tain the following relations: 

2p' m2 

~o(~-~+~+1)= -k BB -~,. 
, e 11a 

(36) 

2p' m m11' ) ~o(~-1- ~~) = -kB--~- 2s'-x~0~. (37 
,Be 11 11 

The presence of a term proportional to ~' in (37) 
takes into account an effect connected with the depend­
ence of the pitch of the force line on the azimuthal an­
gle w0 on the magnetic surface. It can be shown that 
the pitch of the force-line helix is h(w0 ) = 21T (Bs/Be) 
x (1 + f cos w0). Eliminating the functions ~ -1 and ~+ 1 

from (35) with the aid of expressions (36) and (37), we 
obtain an equation for the function ~0 

~ox~ox~o _ f( U' +B.,'+ 2Be• ')J?:_( _!:t_)• 
L U B, aB,' Be2 11' 

1 ( 2p' )2( 11 )2 2p' 11 J +-k2a2 - - +6'ka-- ~.~=0. 
2 Be2 11' Be2 11' 

(38) 

Equation (38) differs from the analogous equation of [3 J 

in a term proportional to K'. Therefore the stability 
criterion can be written directly in the form 

~(i_)2 ~ L(U' !.') 
4 11 + aB,' + Be2 U + B, (39) 

12')2 2'' - -(.-~ k2a2 - s'ka_E_f:l:.__ > 0. 
2 \ Be2 Be2 11 

Since U'/U + B~/Bs = -K' and J.L"" 1/q we obtain, sub­
stituting the expression (27) for K' in the criterion (39), 
the plasma stability condition in the form (3). 

4. USE OF GENERAL STABILITY CRITERION 

The general criterion for plasma stability against 
local disturbances obtained by Solov'ev, [7 J can be writ­
ten in the form 

- .!.:_ +--[(a) (l'x"- I'rfl' + p'V")- (") ,'rf1'2] 
1 ( 1 )2 V'3 
4 11 x'•rt~'• , ,. 

~ ~~ + x'•rt~'• ((y)•- (a) <M > 0. 

where the prime denotes differentiation with respect 
to a. We have used here the notation: 

iB 
y = IVVj• . (41) 

The angle brackets denote averaging over the volume of 
the layer between two close magnetic surfaces 

2n •s" - 4n• -<J> == V' f'fgde ==v(f'fg)o. 
0 

(42) 

Substituting the expressions (5) and (6) into the ex­
pressions for 0!, {3, and y, and recognizing that I 'i/V 12 

= g11 V'2 = V'2 g22 g93 /g, we obtain after transformations, 
using Eq. (9), 

_.!.(_i_)• p'V'f(_!_)_:t_(V')' (_.!._)rfl'(~)'] 
4 11 + 4n• L g.. rfl'2 x' + g22 x'• rfl' 

< 1 iJv' 11'rfi'V' V'2 
{ < 1 >< 1 > '•V'• 

- g22 ae 4rr'J('2 + J6n4x'2rfl'2 - g22 g.. P 

+2 (_.!._ iJv) ( _!_)x'p'V' + (_!_ iJv ) 2 rfl'2 (43) 
g22 ae g.. g •• ae 

-(_!___) (_!_( iJv )•) rtJ'•- (__.!. )(_.!._(iJv )•) x''} > 0 
g22 g.. ae g.. g22 ae · 

Let us transform this expression. We note first that 
the first, fourth, and seventh terms represent the 
square of the difference of two terms. In the fifth term, 
we express the square of the derivative of the pressure 
with the aid of formula (9) in the form 

-p'2V' = p'(l'x'- J'rfl'). (44) 

We combine the first part of this term with the second 
term of (43), and the second part with the third term. 
Taking into account the connections between J and x 
and between I and .P, as given by (17), as well as con­
dition (19), we obtain a criterion that has the same 
structure as in (2): 

1 < 1 ( iJv ) 2
) r V' ()'g) V' ('{g) J 

- 4n2 g22 ae L x'• g •• o + rt~'• g •• o (45) 

+ 4n2 ( yg) (_.!._ iJv )~ 2p'V' > 0 
V' g•• o g22 iJ8 4n2rf1'2 4n'J('• . 

It is sufficient to introduce the toroidal corrections only 
in the terms containing ov/oB. The derivative avjae 
needs to be known here only in first approximation. 
From (10) we obtain directly 

iJv p' a2 p' - = -8n2a2 cos8 = 4n--cos8. ae x' R Be 
(46) 

Using the definition of the mean value (42) and the 
expression (16) for gza/..fi, we obtain for the mean 
values contained in the criterion (45) 

(47) 

( _!_(iJv)2):::::: 2n2a2 (2p')•. (48) 
gzz iJO R2 Be2 

The expression in the brackets is equal to 2/a in our 
approximation. The last term of (45) is of the same 
order of magnitude as the second part in the term with 
( av /i3B) 2• Their ratio to the first part of this term is 
~ B~ /B~. As noted in the introduction, toroidal correc­
tions are essential only when B~ /B~ ;::, k2 a 2• Therefore 
the last two terms in the criterion (45) constitute small 
additions and can be omitted. The criterion then takes 
the form 

( i_- 2P' ka£')2 + ~- J?:_ x'- ~( ~ )\•a• > 0. (49) 
211 Be2 aB,' Be2 2 Be2 

It differs from the criterion (2) in the term with f. In 
our approximation we should neglect the square of this 
term. Thus, when J.L' = 0 the local disturbances are 
stabilized as a result of the magnetic well (the term 
with K'). When J.L'* 0 the product of the terms with J.L' 
and ~' is comparable with the remaining terms. Substi­
tuting in (40) the expression (27) for K' and recognizing 
that when Be /Bs ~ ka we can neglect the ratio Bs /Bs 
compared with J.L 'I J.L, we obtain the criterion for the 
stability of a toroidal plasma pinch against local dis­
turbances. 

1(q')2 2p' - - +--(1-q•)>O. 
4 q aB,' 

(50) 
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This criterion is a generalization of Suydam's cri­
terion to include the case of toroidal geometry. 

5. CONCLUSIONS 

The analysis presented in Sees. 3 and 4 shows that 
radially localized disturbances, investigated on the 
basis of the energy principle, correspond to flute dis­
turbances with large azimuthal numbers m » 1. Flute 
disturbances certainly are stabilized when q2 > 1, i.e., 
under the condition required for the stabilization of a 
helical disturbance. 

An essential feature of this stability condition is the 
fact that it does not limit the plasma pressure, in spite 
of the estimate usually derived from a comparison of 
the effect of the balloon mode with the magnetic-well 
effect (see [lo, llJ ). It must be noted, however, that the 
criterion q2 > 1 is apparently not exhaustive even within 
the framework of ideal magnetohydrodynamics since 
disturbances with small azimuthal numbers ha~e been 
disregarded. The value of the parameter q which is 
critical for the stability must be determined with allow­
ance for disturbances with m = 1, 2, 3, ... , which do not 
have a narrow region of localization. 

In conclusion, the authors are grateful to B. B. Ka­
domtsev, 0. P. Pogutse, and L. S. Solov'ev for a dis­
cussion of the results of the work. 
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