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The correction that must be introduced to the Langmuir-wave frequency as a result of the nonlinear 
coupling of waves with different wave numbers in a weakly turbulent plasma is determined. It is shown 
that under certain conditions the allowance for this correction is important for the description of the 
time variation of the energy spectrum of Langmuir waves. 

1. ONE of the causes of nonlinear interaction of Lang
muir waves in a plasma is induced scattering of the 
waves by particles. [l- 4 J If the particles have an isotro
pic momentum distribution, the probability of this proc
ess is proportional to the difference of the frequencies 
of the interacting waves. Since the wave frequencies 
differ little from the Langmuir frequency, it is import
ant in the description of the scattering process to take 
into account small corrections to the frequency. Usu
ally one takes into account only the "kinetic" correc
tion, which is proportional to the square of the ratio of 
the Debye radius of the electrons to the wavelength. [l- 4 J 

However, in a weakly turbulent plasma the nonlinear in
teraction of the waves leads not only to a time variation 
of their spectrum, but also to a change in the dispersion 
law (i.e., to a change in the group velocity of the plas
mons). It is obvious that within the framework of the 
theory of weak nonlinearity this change is small com
pared with the frequency, but it may turn out to be far 
from small compared with the "kinetic" correction. 
Therefore under certain conditions the "nonlinear" 
correction to the frequency is very important for a cor
rect description of the nonlinear interaction of the 
Langmuir waves. 

The dependence of the frequency of the Langmuir 
waves on the amplitude, with the ion motion completely 
neglected, was considered by a number of authors.[ 5 - 7 l 

It was found that the correction to the frequency is pro
portional to the ratio of the mean square of the dis
placement of the electrons in the field of the waves to 
the square of the wavelength. It is obvious that this 
"nonlinear" correction is larger than the "kinetic" 
correction only if the Debye radius of the electrons is 
smaller than the mean displacement of the electrons in 
the field of the waves. But under this condition, as 
shown by Silin/8 l the plasma is unstable. 

It will be shown below that in the case when the mo
tion of the ions is important in the wave interaction, the 
"nonlinear" correction to the frequency of the Lang
muir waves is proportional to the ratio of the total en
ergy of the waves per unit volume to the density of the 
thermal energy of the particles. This value is much 
larger than the correction which would result from 
neglect of the ion motion, and can be larger than the 
"kinetic" correction. In this case, allowance for the 
"nonlinear" correction leads to a transfer of energy 
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from the waves with lower energy to the waves with 
larger energy (and not from the shorter to the longer 
waves, as was the case when only the "kinetic" cor
rection was taken into account[ 2 J ). 

2. The nonlinear equation for the field in a homoge
neous and stationary medium can be written in the form 
(see [9 J ): 

_'!_'(2_ { 6;;- _}c;k; )E;(w, k) = ~ ~ dw1 dk1 ... dwn-1 dkn-1 
(112 \ k2 n~l· 

XBij(l) .. 7 j(n)(W, k, WI, k1, ... , Wn-1, kn-I)E;(I)(w- W1, k- k,) 

... E:;(n)(Uln-1, kn-1), (1) 

where E(w, k) is the Fourier component of the electric 
field intensity, and £ij <I> •.• j m> are the tensors of the 
dielectric constant. 

To obtain the law of dispersion of waves with random 
initial phases (i.e., for noise) we multiply equation (1) 
by EJ:(w, k) and average over the statistical ensemble. 
We confine ourselves here to terms up to the fourth 
power in the field and use the relation 

(E;'(w, k)E;(w', k')) = li(w- w')li(k- k') (E;E;).,, k· 

Following [9 J, the average of the product of four field 
components is expressed in terms of the average of the 
pair products, and in averaging the terms containing 
products of three field components we use the nonlinear 
equation (1) and express also the terms through the 
products of the four components. As a result we obtain 
the dispersion equation in the form 

(E;E;)w, k r c:~• ( 6;;- ~2'2)- e~ (w, k) J 

= Re{ IE;Em).,, k ~ dw' dk'(E,E;)oo',k'Qijlm(w, k, w', k') 

- ~ ~ dw' dk' (E,,E,)w, k'(EpE;)oo", k" P,lp;(w, k, w', k')}, (2) 

where c:ij(w, k) is the Hermitian part of the dielectric 

tensor, w" = w- w', k" = k- k': 

Qijlm(w, k, w', k') =' vijlm(w, k, w', k') 
- S;r;( w, k, w', k')Arp ( w", k") Splm (w", k", w, k), 

Palp;(w, k, w', k') =A;q'(w, k)S;;1(w, k, w', k')Sqp,*(w, k, w', k'), 
Vijlm(W, k, W 1 , k') =(Bijml(W, k, w"', k", -W1 , -k') 

+eiJlm(w, k, w", k", w, k), Sij1(w, k, w', k') 
= e;;,(w, k, w',k') + eu;(w, k, w", k"). (3) 

For an isotropic medium, which we shall consider be-
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low, the tensor Aij (w, k) takes the form 
k·k· 1 li··- k·k/k2 

A;;(w,k)=-'~'--~+ '' ' ' , 
k2 e1(w, k) e''(w, k)- k2c2/ul2 (4) 

where r.Z and Etr are respectively the longitudinal and 
transverse dielectric constants. 

We confine ourselves to a consideration of longitudi
nal noise when 

- k;k; 2 
(E;Ei)w,k -k,_- (E, )w,k· 

2 
If the quantity (Ez >w, k is real, we get from (2} 

{ 
, \' I I k; k/ km k{ R Q k I 1) } (E e1 (w,k)+.dwdk(E,2)w•,k' k 2 k 12 e ijlm(w, ,w,k. ,2)w,k 

1 r, I I ks' kt' kp/1 k{' I I --2 Jdw dk (E,2)w•,k•(E,2)w",k" (k 1k") 2 RePszp;(w,k,w ,k )- 0, 

(5) 

where El' is the real part of the longitudinal dielectric 
constant E z. 

We confine ourselves to waves with frequencies 
close to the electron Langmuir frequency, and disre
gard the contribution made to the dispersion equation 
by the second term of (4) (this means that we confine 
ourselves to wave lengths shorter than c/ WLe>· Under 
these conditions, the last term in (5) must be discarded, 
since it is impossible to satisfy the energy and wave
vector conservation laws for three Langmuir waves. 
The dispersion equation (5) takes the form 

el' (w, k) + ~ dw1 dk1 (E,2)w•, k' Re Q(w, k, w1, k1) = 0, (6} 

where, according to (3) and (4), 
I I k;kmk/k{{ 

(!(w, k, W, k) = (kk1)2 Vijlm(W, k, w1,k1) 

k II kIf 
- k"Ze;(ffi~~ k")·S;r;(w, k, W1, k1)Spim(w", k", ffi, k)}. (7) 

Using the general expression for the dielectric ten
sors of the plasma, which is obtained by solving the 
kinetic equation by perturbation theory and which is 
contained in [9 J, we get 

l' ( k I kl) k;kmk/k{ v ( k I kl) 
W, ~, W, = (kk')2 ijlm {0 7 , (t), 

S(w,k,w1,k1) = 
k;k/1k/ 

kk1k 11 
S;rj ( W, k, (()1, k1) = 

+ kl -~- ____<:, a r k" at )] 
avrx \ u/'- k"va ava 

(8) 

where fa is the particle distribution function; N a, e a, 
m a, v a , and p a are the concentration, charge, mass, 
velocity, and momentum of the particles of type a. 

We note that Eq. (6}, in which we used explicit ex
pressions for the quantities (8), was derived by Pet
viashvili[lOJ and is contained in the review of Kadom
tsev. [lJ 

We solve the dispersion equation (6) by perturba
tion theory, taking as the zeroth approximation the 

usual dispersion equation for the longitudinal waves 
El' (w0 , k) = 0, i.e., 

ffio = ffi£[1 + 3/2(krve) 2], (9} 

where w L = v w Le + w Li, w La= V4JTN ae~/ma is 
the Langmuir frequency of the particles of type a, and 
rne is the Debye radius of the electrons. 

Assuming that (Ez >w k differs from zero only when 
w = w0 , we introduce th~ noise spectral density (see [9 J ): 

(2:rt)3r a ' 
W1(k) = -~ J dw(Ez2)w,k ~[ffie1 (w, k)]. 

4:rt 0 0(() 
(10) 

From (6} we obtain the correction to the frequency in 
the form 

L'lffi =-~I dk1 W1(k')Re[Q(ffio(k),k,wo(k1),k1 ) 8:rt2 J 
+ Q(wo(k), k,- w0 (k1 ),- k1 )]. 

(11) 

OWing to the presence of the mass in the denomina
tor, the ionic terms in (8) are much smaller than the 
electronic terms, and will henceforth be disregarded. 
In addition, we take account of the fact that the phase 
velocities of the Langmuir waves are large compared 
with the thermal velocity of the particles ((I k ·vI I w) 
« 1, (lk', vl/w' « 1), and we expand in terms of these 
parameters in the electronic terms of (8). As a result 
we get from (11), in the lowest approximation in the 
quantity (krne) 2 « 1, 

L'!w = - WLe -~I dkiW (kl) (\ k.k: )2{. rve -2 . 
8:rt2 m2<uLe4 J kk 

1 rve + 6k12- k"2- . (12} [ (k" )-2 D 4 [kk1]' 1 
X 1 + (k"rDe)-2 + e/ (w", k") 3 k"2 (kk1 ) 2 

we have assumed here that the particles have a Max
wellian distribution, and we used the notation (see [l1J) 

1 [ ( - ~ 2 \ ~ ( ,z )] e/(w,k)=---Re 1-~;exp -'-)J d<exp -2 , (13) 
(krv;) 2 2 +ioo 

{3 a = w/kvT a• VT a = vT alma, and 
rna = ;/T a /4JTN ae~ is the De bye radius of the parti
cles of type a. 

When the inequality krne » vm/mi is satisfied, the 
ionic dielectric constant in (12} can be neglected. Then 
owing to the fact that (k"rne)-2 » 1, the first term of 
(12) will be of the same order as the remaining terms, 
and the correction to the frequency can be written in 
the form 

= -- _!JJ_r-e__ _::.____ I d ~w kl ( kkl )z{ 6k1z - ~ [kkl]' } 
L'!w 8:rt2 mZwLe' J k ( ) \ kk1 3 (kk1 ) 2k"2 • 

(14} 
Thus, in accordance with the available literature 
data, c5- 7 l the correction to the frequency is propor
tiona! to the ratio of the mean square of the electron 
displacement in the wave field to the square of the 
wavelength. 

Of much greater interest is the case when the ionic 
polarizability is appreciable. This occurs for suffi
ciently large wavelengths (krne « vm/mi ). From (12) 
we obtain with the aid of the asymptotic expression for 
(13) 

WLe 1 rve2 \ 1( kk1 ) 2 1 Aw =------ -- J dk ~- W(k ). 
32n3 NeTe rDe2 + rDi2 kk1 (15) 
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If the temperature of the electrons and the ions is of 
the same order, then the correction to the frequency 
(15) is larger than the correction (14) by a factor 
(krDe)-2. 

However, when the noise has an isotropic distribu
tion with respect to the wave vectors, the correction 
(15) to the frequency does not depend on the wave vec
tor k and is a small and insignificant correction to 
WL· On the other hand, if the noise distribution is an
isotropic, then l:l.w depends on the direction of k. 

3. Under conditions when formula (15) is valid, the 
nonlinear interaction of the Langmuir waves due to the 
induced scattering by ions becomes important. The 
equation describing this process is l2, 3 l 

8W(k,t) 1 1 W(k,t) rDi2rv.' VTe 
--{)t-=- 4(2:rr)'/• Nerne3 -----r:;---(rve2 +rv;2) 2 vTi 

x~" dk'(kk')'w(k't)w(k)-w(k') (16) 
J \ kk' ' /k-k'l . 

For w(k) we use formula (9) and the correction (15). 
We then get 

8W(k,t) 3 WLe W(k,t) rDi2rve6 VTe 
-ai-=- 8(2:rr)'f,- Nerve' -r;- (rv;2 +rvl) 2 VTi 

( kk' 2 1 { xI dk'W(k' t) - ';' --- (k2 - k'2) 
J ' kk' /k-k'/ 

1 1 1 [( kk" 2 ( k'k" )']} 
- 48:rt3 T.N. rne2Tr:;;T ~ dk"W(k", t) kk")- k'k" (17) 

Equation (17) describes a nonlinear interaction process 
in which the noise energy is conserved 

Wo= ~ dkW(k,t) = const 

and the total number of quanta is conserved 

No""'~ dkN{k,t) = ~ dkW(k,t)/liwLe=const. 

To reveal the effects resulting from the allowance 
for the "nonlinear" correction to the frequency, let us 
consider the interaction between two wave packets hav
ing a width small enough to be neglected: 

W(k, t) = W,(t).S(k-k,) + W,(t).S(k-k,). (18) 

Equation (17) reduces to a system of two equations 

where 

dW1 I dt = -W, W,[a- b(W1 - Wz)], 

dW2 / dt =lW,W.[a- b(W,- W2) ], 

a= _3 __ ~_!_. rv;2 rve6 VTe ( k 1k, ) 2 k 12 - k2' 

8(2:rt)'l• Nerne3 Te (rv.' + rv;2) 2 VT; k~k2 /k1 - k2 / ' 

b= 
1 WLe rni2 rne6 

128:rt3 (2:rt)'f, N.rne3 (rne'·+ rDi2 ) 3 

1 {k1k2J' I k1k2 \ 2 VTe 1 
X--~- -- -------

N.Te' (k1k2) 2 k1k2 VTi /kt-k2/ 

the solution of (19) with a = bW 0 /a * 1 is 

e-aWot = ( W1(t) )1/(1-j.a;) (· w.- W1(t) )-1/(1--a) 
W,(O) Wo- W1(0) 

j a- b(2W1(t)- W0) j""/(1-a.'J 

X a- b(2W1(0)- W0 ) ' 

where W0 = W 1 (t) + W 2(t) = W 1 (0) + W 2(0) is the total 
noise energy. 

(19) 

(20) 

(21) 

When a « 1 we get from (21) the solution obtained 
in l2l, which describes the transfer of energy from the 
short waves to the longer ones. The stationary state 
(t- oo) occurs when the entire energy is concentrated 

in the waves with the smaller wave number. 
If the "nonlinear" corrections in the dispersion law 

are larger than the "kinetic" corrections, then a > 1. 
The last factor on the right side of (21) can then become 
infinite if 

(22) 

However, the function on the left side of the (21) is 
bounded. Therefore, the change in the quantity W 1(t) 
can occur only in such a way that W 1(t) * W 1 cr· It fol
lows therefore that when W 1 (0) > W 1, cr the' stationary 
state will occur at W 1(00) = W0 and W 2(oo) = 0. On the 
other hand, if W 1(0) < W 1 cr• then the stationary state 
is reached at W 1(oo) = 0 and W 2(oo) = W0 • In other 
words, in the case of large "nonlinear" corrections to 
the dispersion law, the direction of the noise -energy 
depends on the initial distribution of the noise: The 
transfer is from the wave packet with the lower energy 
to the wave packet with the higher energy. The time of 
such a transfer is obtained by writing the solution (21) 
for 01 » 1 in the form 

Wt(t)= 

= W0 _ W0 -2W1(0) [Wo2-4W,(O) (Wo- W,(O))exp(-bWo2t) ]':• 

2 2 (Wo -2W1(0) )2 

The characteristic time of establishment of the sta
tionary distribution of the noise is 

(23) 

To~ _1_2 ~ 10, (NeTe)2 ll.krve 1/ m , (24) 
bWo Wo WLe V m, 

where l:l.k = lk1- k2l· 
If l:l.krDe ~ 10-2, WLe ~1012 sec- 1 and NeTe/Wo 

~ 10, then for a hydrogen plasma T 0 ~ 10-9 sec. We 
emphasize that formula (24) is valid at a sufficiently 
high noise level ((W0 /NeTe) > (krDe)2) and for suffi
ciently long waves ((krDe)2 « m/mi). 

In order for the considered process of nonlinear in
teraction of Langmuir waves to actually determine the 
variation of their energy spectrum, it is necessary to 
verify that conditions exist under which the other non
linear interaction processes occur more slowly. In par
ticular, the characteristic time of the confluence of two 
Langmuir waves with formation of a transverse wave, 
obtained in l9 ' 12l, is equal to 

NeTe 1 ( c )' -r1~t ~ 10'-w - - (krv.)', 
0 WLe VTe 

and this time exceeds T 0 under the condition 

Wo - I VTe )'1/-;;;: 
1Vr:::;;:.10' c V-;;;-(krne)-'. (25) 

When VTe/c ~ 10-2 and (krDe)-2 ~ 104 we get from (25) 
for a hydrogen plasma (W0 /NeTe) » 10-a. 

For Langmuir waves, processes of confluence and 
decay with four waves taking part are also possible. The 
"four-plasma" decays were investigated in a number 
of papers. In particular, Kovrizlmykhl13 l and Liperov
skii and Tsytovichl 14 l obtained general expressions for 
the probability of this process with allowance for the 
ion motion; these expressions, however, do not agree. 
The characteristic time of the four-plasmon interac
tion under conditions when (24) is valid, as given in l14l, 
is equal to 

1 ( M )' 1 NeTe )2 -r, ~ 102 - - (krve)-2 \______., • 
WLe k Wo 
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Putting D.k ~ k, we find that this time is larger than T 0 

when the inequality (krDe)-3 > 103 "'m/mi is satisfied. 
If, on the other hand, we use the characteristic time 
corresponding to the probability obtained in l 13 J for the 
four-plasmon process 

1 ( !!.k )2 ( NeTe )2 't'o ~ 102 - - (krv,) 2 -- , 
WLe k Wo 

then T 4 > T 0 under the condition (krDe) 2 > m/mv which 
is not satisfied for formula (24). 

The foregoing example has shown that small "non
linear" corrections to the frequency of the Langmuir 
noise can radically change the entire character of the 
nonlinear interaction of the waves. It is obvious that in 
other cases, too, when the frequencies of the interact
ing waves differ little, allowance for the indicated cor
rections may be important for a correct description of 
the induced scattering of waves by particles. 

In conclusion, we are grateful to V. P. Silin for nu
merous discussions and critical remarks. 
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