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A macroscopic description is proposed for the dynamic lamellar structure of the intermediate state of 
superconductors under nonstationary external conditions or in the presence of a constant current. The 
case of a current-carrying plane-parallel plate located in a perpendicular magnetic field is considered 
in detail. 

TYPE I superconductors in the intermediate state loca
ted in an external magnetic field are mixtures of normal 
and superconducting phase. In the state of thermody
namic equilibrium, the boundaries of separation between 
the phases are fixed and their location, which is deter
mined from the condition of minimum energy, corre
sponds to a set of alternating layers. [l J Such regular 
structures of the intermediate state can be realized ex
perimentally in a number of cases[2J with high accuracy. 

Upon the superposition of an external field, the boun
daries of separation begin to move about. Furthermore, 
motion of the layers is shown to be possible when direct 
current flows through the specimen, i.e., under station
ary external conditions.C3 ' 4 J If the velocity and layer 
configuration here changed little over distances of the 
order of their thickness, then the intermediate state ad
mits of a macroscopic description, into which enter the 
intensities of the electric and magnetic fields E and H, 
averaged over a large number of layers.cs-7 ] 

However, inasmuch as completely different layer 
configurations are possible for specific average fields, 
such a description does not allow us to answer the ques
tion of the location and velocity of motion of the boun
daries of separation between the phases. The aim of the 
present research is to show that a more complete 
macroscopic description of the intermediate state is 
possible, a description which permits the calculation of 
the quantities mentioned. 

We shall consider the case of sufficiently low tem
peratures, which allows us to neglect the effects connec
ted with the liberation of heat in the motion of the phase 
boundaries. 

1. The location of the boundaries between phases can 
be characterized by specifying, at each point of the vol
ume occupied by the intermediate state, a unit vector n 
directed normal to the boundary. Moreover, if the in
tensities E and H are known, that is, the macroscopic 
electrodynamic equations are solved, then it is possible 
to determine the rate of motion of the layers. Actually, 
from the conditions of continuity of the tangential com
ponents of the electric field and the normal components 
of the magnetic field in a system of coordinates attached 
to the moving boundaries, and also from the fact that 
both the electric and magnetic fields are absent in 
superconducting regions, it follows that 

[ e + : [nh], n J = 0, nh = 0, ( 1) * 
*[nh] ='!X h. 
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where e and h are the values of the electric and mag
netic fields in the normal layers; V is the velocity of the 
layers; positive V corresponds to motion in the direc
tion n. By taking it into account that e = E/xn (xn is the 
concentration of the normal phase) and h = H, where 
IH I = He (He is the critical magnetic field), we get from 
(1) 

V=-c-n[EH], nH=O. 
Hc 2Xn 

(2) 

The second of the given equations shows that the vector 
H is directed everywhere tangentially to the boundary 
between the phases. 

At a given instant of time t, let some boundary of 
phase separation be the surface given by the parametric 
equation r = r(~, 7]), where ~' TJ are parameters so cho
sen that at the point r 0 = r(O, 0), the derivatives 
r~ = arja~ and r7J = 'Or/'OTJ are mutually perpendicular 
and both are of unit magnitude. The vectors r ~' rTJ, and 
n(ro, t) form a system of three mutually perpendicular 
unit vectors. 

At the time t + ot, the equation of our boundary of 
separation can obviously be written in the form 

r = r'(£,TJ) == r(£,TJ) + V(r(£,TJ))n(r(£, TJ))ot. (3) 

The vectors 

and 

where the indices denote derivatives with respect to the 
corresponding variable, tangent to the new surface. 
Therefore, the vector 

[r{r~'] = [r6r~] + ot{Vdnr~J + V~[r,n] 
+ V[n0r~] + V[r;n~]} 

is directed along the normal to it. Taking it into account 
that for ~ = 7J = 0 we have r~ x rTJ =nand, moreover, 
n~ x r7J and r~ x n are directed along n, we find the 
unit vector normal1o the surface at the point ro + Vnot 
and at the time t + ot: 

(4) 

On the other hand, 

n'- n(ro, t) =o n(ro + VnOt, t + ot)- n(ro, t) = {7tn..r- V(n V)n }ot. (5) 
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Comparing ( 4) and (5), we find 
iJn -+ V(nV)n = -VV +n(nVV). at 

(6) 

If E, H, and Xn are given as functions of the coordin
ates and time, and the vector n(r) at the initial instant 
of time, then Eq. (6), together with the conditions (2), 
determine at any instant of time the vector n, i.e., the 
location of the layers. 

2. We apply these equations to the study of the struc
ture of the intermediate state which arises in a plane 
parallel plate under the action of a perpendicular mag
netic field ::Je and a direct current. We shall consider 
here two limiting cases, l « R and l » R, where l is 
the mean free path of the electrons, R is the Larmor 
radius in the critical magnetic field. 

In the case l << R, one can neglect the Hall effect and,. 
if we consider, for simplicity, that the crystalline lattice 
of the metal is cubic, we can write the conductivity ten
sor of the normal phase in the form aik = aoik· We then 
have (see[7 J): 

Hx = 0, Hy = -He sin xz, H, = H cCOS xz, (7) 
Ex == E = const, Ey == li, = 0; 

Xn=::Je/Hccosxz. (8) 

Here K = 41TaE/ c::Je, the z axis is directed perpendicular 
to the plane of the plate, the x axis along the direction of 
flow. With the aid of (7), (8), and (2), we find the veloc
ity of the layers 

V = -cEny /de. (9) 

We are most interested in the stationary distribution 
of the layers, when all the quantities depend only on the 
z coordinate. Here Eq. (6) can be written in the form 

dn1 dV 
V---;;;:=n1 dz, 

. dn, dV dV 
vn,a;:=-a;:+n,2 dz·, (10) 

where the index t denotes the component of n tangential 
to the plane of the plate. Equations (9) and (10) have the 
following general solution, which satisfies the condition 
n2 = 1: 

a COS XZ COS Jo(Z 
ny= _. ' 

i1 + a2 cos2 xz 
-----

}'1 + a 2 cos2 xz 

sin xz 
n, = --:===== 

i1 +a' cos2 xz 

(11) 
a is an arbitrary constant. Its calculation is not possi
ble within the framework of the macroscopic theory and 
would require consideration of the effects of surface 
tension on the boundary between the phases. However, 
one can think that one of the two limiting possibilities 
exists: a - oo or a = 0. 

In the first case, the layers are located perpendicular 
to the current and are fixed. The form of the layers can 
be determined if we note that the system possesses a 
period d which does not depend on x, because of the 
homogeneity in the direction of the x axis. Use of Eq. (8) 
then leads to the following dependence of the thickness 
of the superconducting layers on z: 

a,(z) 
d 

cos XZ- ::Je/He 
COS XZ 

(12) 

For cos Ka > ::Je/Hc, where a is the half thickness of the 
plate, i.e., for not very large values of the current, the 

superconducting layers appear on the surface. In the 
opposite case, as vanishes inside the plate. 

If a = 0, then the layers are located along the flow 
and move in the direction of the y axis with the velocity 
V = -cE/.'!C or, if we take the dependence of the electric 
field on the current into account (see[7 J), 

c2 4nja 
V =---arc sin--, 

4ncra cHe 
(13) 

where j is the average current density over the cross 
section, and it is assumed that cos Ka > :tt/Hc. 1 > The 
lines of intersection of the boundaries of phase separa
tion with the plane yz, which correspond to the equali
ties nx = 0, ny = cos Kz, nz = sin Kz, are given by the 
equation 

c::Je 
Y = 4ncrE!n cos xz + const, ( 14) 

where the different values of const correspond to differ
ent boundaries. The thicknesses of the superconducting 
layers are determined from (12) as before. 

In the case l << R, we limit ourselves to a considera
tion of metals with unequal numbers of electrons and 
holes, where, in contrast to the case considered above, 
the Hall effect plays an important role. Here (see[7 J ) : 

Ex=O, 

Hx=O, 

E - ::Jei 
Y- Nee' 

4nj 
Hy=--z, 

c 

(15) 

(16) 

where N is the difference between the number of elec
trons and the number of holes per unit volume. 

In place of (9) and (11), we have now, in analogous 
fashion, 

V=-1-· n · 
1\'e x, 

(17) 

Hv n, = - __ ___::.,=~ 
ia,H," +He2 

(18) 

When a - oo, the layers are perpendicular to the 
current as in the case l << R; however, now they move 
with the velocity j/Ne, i.e., with the mean drift velocity 
of the current carriers. 2 > The form of the layers also 
changes. In place of (12), we now have 

a,(z) c:Je [( cHe \2 ]-·'/, 
-d- = 1 - 4nj \ 4nj } - z' · (19) 

For a = 0, the layers are located along the flow and 
are at rest. The equation of the phase separation boun
dary in the yz plane here has the form 

y = i(cHe I 4nj) 2 - z2 + const. (20) 

3. Let us consider the problem of the propagation of 
disturbances in the intermediate state, which are des
cribed by Eqs. (6) and (2). Here we are dealing with 
disturbances in the distribution of layers without a 
change in the mean electromagnetic field, i.e., for con
stantE, H, and xn-

l)For a conductivity of the specimen of the order of 109 ohm-1 -cm- 1 , 

He= 100 Oe, and current density j =I A/cm 2 , we get V = 10-3 cm/sec. 

2>For indium, for example, withj =I A/cm 2 , we get V = 1.6 X 10-4 

em/sec. 
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Let some stationary solution be given, corresponding 
to the flow of a direct current in the specimen. In the 
general case, such a solution is inhomogeneous, i.e., 
Eo, Ho, xi:', and n0 depend on the coordinates. However, 
this dependence can be neglected if we consider distur
bances with wavelengths much shorter than the distance 
at which the inhomogeneity becomes significant. We set 
n =no + n', where n' is a small addition, proportional 
to eik · r-iwt. By linearizing Eq. (6) relative to it, we 
obtain 

{ Hc2Xn } ( ) -c -{J)-(nk)([EH]n) n'={k-n(nk)}([EH]n'), 21 

where we have omitted the index zero for brevity on 
quantities referring to the unperturbed solution. Since 
n·H = n'·H' = 0, it is seen from (21) that k · H = 0. 

We multiply both sides of Eq. (21) in scalar fashion 
by the vector E x H. We then have 

{ w - -~- [EH] k} ([EH] n') = 0, 
He Xn 

whence we find 
c 

w = - 2- [EH] k. 
He Xn 

(22) 

In the case of the plane parallel plate considered 
above, the latter formula can be rewritten in the form 

and 

The rate of propagation of the disturbances is equal 
to 

-v=~ = { c[E3£]/.1t'2 (l<R) . 
ak i/Ne (l';'?R) (23) 

We note that Eqo (23) actually determines the rate of 
propagation of the arbitrary disturbances (and not only 
short-wave ones with small amplitude). Actually, sub
stituting (9) and (17) in (6), we get 

an11 cE an11 
----=0 l<;,R 

at :;e ay ' 

anx..l..j__anx=O l';'?R, 
at Ne ax ' 

whence it is seen that an arbitrary (but one agreeing 
with (7), (8) and (15), (16)) initial picture of the distri
bution of the layers drifts in the plane of the plate with 
velocity v. 
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