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Bremsstrahlung accompanying the collisions of ultrarelativistic electrons and positrons has been in
vestigated, including the hard end of the spectrum. Bremsstrahlung cross sections have been obtained 
valid for all photon energies. It has been found that at the end of the spectrum the bremsstrahlung 
cross section for electron-positron collisions is appreciably greater than the corresponding cross 
section for electron-electron collisions. 

1. Recently the process of emission of bremsstrahlung 
photons in electron-electron and electron-positron 
collisions has been intensively investigated in experi
ments on colliding beamsu'2 J. The investigation of this 
process is of considerable interest since it can be util-) 
ized for monitoring collisions of the beams, and also 
from the point of view of studying radiation corrections. 
In a paper by the present authorsl3J (cf., alsol 4l) the 
spectrum and the angular distribution of the emitted 
photons have been obtained which are valid for the 
whole range of frequencies with the exception of the end 
of the spectrum 0 

E-Ul';>m, 

while at the end of the spectrum the photon energy is 
given by 

Wmax = E - m2 I E. 

(1) 

(2) 

In this paper we consider the hard end of the spec
trum of the emitted photons and we obtain general ex
pressions describing the whole spectrum of bremsstrah
lung from ultrarelativistic electrons. In this whole 
paper we shall systematically expand all quantities in 
powers of m 2/E2 and retain only the leading terms of the 
expansion. As will be seen below the end of the emission 
spectrum has interesting specific properties, in particu
lar, the bremsstrahlung cross sections for electron
electron and electron-positron collisions, which coincide 
when condition (1) is satisfied, differ appreciably at the 
end of the spectrum. The importance of the role played 
by recoil and the occurrence of interference lead to an 
appreciable qualitative difference between the case 
under consideration and the end of the bremsstrahlung 
spectrum for an electron in a Coulomb field. 

2. The process of bremsstrahlung in electron-elec
tron (electron-positron) collisions is described in the 
e 6 -approximation of perturbation theory by eight dia
grams (Fig. 1), where each diagram corresponds to 
Feynman diagrams with the emission of a photon before 
and after a collision. In the case of electron-positron 
collisions it is necessary to make the substitution 

(3) 

Inl 3J it was shown that when condition (2) is satisfied 
with an accuracy up to terms of order m 2/E 2 it is neces-

1>We consider bremsstrahlung in the c.m.s. for the initial particles 
and we utilize the notation of the preceding article[ 3). 
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sary to consider only the contributions of the squares 
of the matrix elements of the diagrams a, b, a', b' for 
electron-electron collisions, and of diagrams a, b for 
electron-positron collisions. With the indicated accur
acy it is possible to neglect all the interference terms. 
For the scattering diagrams in both processes this cir
cumstance is associated with the fact that, firstly, an 
essential contribution is made only by small scattering 
angles, and, secondly, all the particles are ultrarela
tivistic and radiate into narrow cones of angle m; E; as 
a result the interference between diagrams associated 
with the overlapping of cones turns out to be ~m2/E 2• 
For the same reason the interference between direct 
and exchange diagrams gives no contribution in the case 
of electron-electron collisions. The contribution of the 
annihilation diagram and the interference between anni
hilation diagrams and scattering diagrams for electron
positron collisions drops out because of the large value 
of the transferred momentum (~ E2J in the annihilation 
diagram. 

At the end of the spectrum the situation is changed 
in an essential manner. For photon energy 

w = 2E(E- m) I (2E- m) 

one of the final particles having emitted a hard photon 
can come to rest. At the very end of the spectrum for 
w = wmax (2) both final particles are moving along the 
same straight line in the direction opposite to the direc
tion of the photon momentum. As a result of this the 
choice of terms giving a contribution with the indicated 
degree of accuracy (~m 2/E 2 ) becomes different. It is 
true that the interference between the contributions of 
diagrams in which different initial particles radiate 
((a, b), (a', b), (a, b'), (a', b') for electron-electron 
collisions and (a, b), (a, b'), (b, b'), for electron-posi
tron collisions), gives no contribution for the same 
combination of reasons. The interference between con
tributions of diagrams (a', b') for electron-positron 
collisions is exactly equal to zerolsJ. No contribution is 
made likewise by the square of the contribution of the 

FIG. I. 
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annihilation diagram in which the final particles radiate 
due to the large value of the transferred momentum. 
But the square of the contribution of the annihilation 
diagram in which the initial particles radiate is by no 
means small because at the end of the spectrum the 
transferred momentum becomes of order m 2 (cf.l61 ); 

also the interference contributions of the diagrams do 
not disappear in which the same initial particle radiates 
((a, a'), (b, b') for electron-electron and (a, a'), (b, a') 
for electron-positron collisions). More exact estimates 
of the order of the neglected terms are given with the 
aid of the Schwarz inequality in Sec. 7. 

3. We now obtain the contribution of the square of the 
matrix element of diagram a which is the same for both 
processes under consideration. The exact expression 
for the contribution of diagram a was obtained inl?J 
(formula (40)), and in the case when condition (1) is ful
filled the approximate expression with an accuracy up 
to terms~ m 2/E 2 is given inl 3J (formula (1)). 

We now write out the terms giving the contribution to 
the spectrum of emitted photons with an accuracy up to 
terms~ m2/E 2 which is valid for all photon energies 
including also the end of the spectrum: 

d _ r02a 1 dx,dx,dx,di'J.2 { 2v2 1 [ 4 ( Xz) 
Cis--'.) --+- y2 1--

nv3 I'J.4 ys xa' x1x3 v 

+I'J.2v2 [(1-~ )' + 1]]-2": (1- x,)' -~- ~: 
V , Xt V X3 Xt 

(4) 

where 

v = - (p,pz), Xi = - (kpi), I'J. = Pz- p,, x = x, + Xz = Xs + x,, 

S = -[Q,x?- 2P,x, + R,], i = 1, 2, 3, 4. (5) 

and Qa, Pa, Ra coincide respectively with Q, P, R ofl 31 

(formula (5)), while Q1, P1, R1 are equal respectively to 
the quantities Q, P, R ofl 71 (formulas (33), (34)), if each 
of the latter is multiplied by ( ( v + 1) / v) 2, and also the 
following equalities hold Q1 = Q2, Qa = Q4. Here and in 
future we utilize the metric (ab) = ab - aobo and li = c 
= m = 1. The last term in the curly brackets in (4) 
gives a contribution only at the end of the spectrum. 

The calculation of the spectrum of emitted photons 
taking into account its end is, generally speaking, quite 
complicated. But the situation can be considerably sim
plified if we choose for each term the appropriate order 
of integration. The ranges of integration when it is car
ried out in the following order: first over K1, then over 
112, then over K 3 (Kl, 112, Ka), are given inl 71 , and for the 
sequence (Ka, 112, KJ follow easily from formulas (7)-(9) 
ofl 31 • However, we note that in order to obtain the dif
ferential cross section with respect to the angle of 
emission of the photon we can utilize only the sequence 
(Ka, 112, K1)• 

In finding the contributions of the squares of the 
matrix elements of the diagrams the first integration is 
carried out in analogy tol3 ' 71 : 

Here we have 

/(I)= nPi 
t 0~2' 

(6) 

(7) 

We consider the region of integration over the varia
bles 112 , K1· Utilizing formulas (8), (9) oflal we have 

where 

I'J.!ax = P + Xi ± vQi"l'~, 
min 

p ="-X -1 = 2E2(1- s -1 I E2), 
A= p + 2 ="-X+ 1 = 2E2(1- £), 

11 =pI J., s = w IE, p ='IE'- 1, 

(8) 

(9) 

the quantity 1J is characteristic for describing the be
haviour of the end of the spectrum. At the end point of 
the spectrum p (wmaxl = 0 (cf., (2)). The region of inte
gration is shown in Fig. 2. The width of the region over 
112 for a given K1 is proportional to Iii and at the end 
point of the spectrum reduces to zero, so that the region 
degenerates into a segment of the straight line K 1 = 112 • 

The calculation of the bremsstrahlung spectrum is 
simplified considerably if we carry it out in such a se
quence that the terms with Pi do not arise in the num
erator (formula (7)). As a result of this we obtain 

where 

dcr,= ro2a d~ {2(1- ~) [ 1- s +-1--~J (L- {lj) s 1-£ 3 

+l'11f 1-L' -~(_!:__ l'r;i:E\']} 
L 2p p' 2 p J 

L = 2ln ( 1 + E l'~IP_ \ 
\1-El'~lp;· 

(10) 

(11) 

When condition (1) is satisfied the contribution is 
given only by the first term ( 1J- 1), obtained inlal 
(formula (16)). At the end of the spectrum both terms 
are essential. Near the end point of the spectrum 
(7], p « 1) the inverse powers of p entering into the 
second term in formula (10) cancel so that the cross 
section assumes the form 

as -
dcr, = 3ro2a-l'1'J, 11<1, s 

(12) 

and at the end point of the spectrum tends to zero like 
fii. We note that the quantity Iii is proportional to the 
momentum of the final particle in the c.m.s. for the 
final particles. 

The contribution of diagrams b to the spectrum is, 
naturally, equal to the contribution of diagrams a, it 
corresponds to radiation along the particle 2. The ex
change diagrams make the same contributions to the 

FIG. 2. 
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spectrum as the direct ones, but in virtue of the identi
cal nature of the particles the total contribution should 
be divided by 2, so that the total contribution to the spec
trum of the squares of the matrix elements of the dia
grams is 2do-s. 

4. We now go on to consider the interference terms 
for the case of electron-electron collisions. We have 
already noted that at the end point both final particles 
move in the same direction with the same momenta. 
Therefore, the direct and the exchange diagrams in the 
case of the emission of a given particle give the same 
contributions and the interference between them is sig
nificant. From here it also follows that at the end point 
of the spectrum in virtue of the Pauli principle the final 
electrons cannot be in the same spin states. Thus, we 
must consider the interference of the contributions of 
the diagrams a, a' and b, b'; the contributions of both 
interference terms to the spectrum are the same, and 
the total contribution, as has already been noted, should 
be divided by 2. Thus, it is sufficient to find the contri
bution of the interference of diagrams a and a'. We now 
write out the terms which give a contribution to the 
spectrum: 

dae; = _ ro2a ~ dx, dxz dxa d/';.~, { _ ~ + vx + vx _ 11"-'X2 _ 11'"-'X2 }, 

nv 3 1S 11' /';.'2 x, xs x, 2x,xs 2x,x, 

(13) 

where 

11' = p,- p3, 11'2 = -112 + 2 (p + x,). (14) 

Carrying out the integration in the appropriate se
quence (cf., the preceding section) we obtain the contri
bution of the interference to the spectrum in the case of 
an electron-electron collision 

d'{ L -[L' 2(L2 

daei = r02a--[ - p ln ( 1 + 2p) + YlJ p + p" \ 4 

(1 +E/p)L1);1; + 2121,_!1n(12t. -1) J] + 2 ~ g,- 2g, }.(15) 
2(]121.-1) p . 

Here 

g1 = ~ [ -2ln (121:- 1) + ~ 1zP -In r';, arctg r'!, 
p' 121.-1 

•;, 
'r arctg y J + ln r'f, arctg r'i, + 1 -- dy , 
· .• , y 

1 [ 1 r \ ln2 ( 1 + 2p) J ( 6) g,=p 2F(r)-F(r(1+2p))-F 1 + 2P)+--2-' 1 

where 

1-{li 
r=---, L 1 = -lnr, 

1 + l'lj 
f ln(1-y) 

F(x)= J dy. 
y 

(17) 

The integral appearing in g1 cannot be evaluated in 
terms of elementary functions, but it can be represented 
in the form of a rapidly converging series convenient 
for carrying out calculations: 

00 y2n+t 
\ _arctg Y_ dy = L ( -1) n --=------:--
. y n~o (2n+1) 2 

(18) 

For p « 1 we have 

g, ='/sip+ ... ' "' = 2l"2p + ... ' (19) 

for 1 « p « 11 

g, =~In 2r + ~ +.... g, =!_en' 2p_ + Jl~) +... . ( 20) 
212 p2 p. 2 6 

The whole interference contribution for p << 1 has the 
form 

(21) 

The complete bremsstrahlung spectrum in the case of 
electron-electron collisions is given by 

(22) 

and is given by formulas (10) and (15). For p « 1 the 
bremsstrahlung spectrum is given by formulas (12) and 
(21). 

5. In the preceding sections we have utilized a very 
rational method of obtaining the bremsstrahlung spec
truro. A much more awkward approach is the one in
volving the calculation of the differential cross section 
with respect to the angles of emission of the photon. 
But this cross section has an independent value for the 
analysis of the distribution of the emitted photons, and, 
therefore, we shall quote it here for the case of 
electron-electron collisions. With the adopted degree 
of accuracy we have 

_ ro'a dx dxt { x ( v - x) [( _ 3 . + 8x __ 4x' \} F 
da.- 2 x v" x,2 x v Xt vx,' 11 

where 

where 

( x2 2x ( x )) J xvX1 -/-- \2v +----J--1 1-- L -~-
v - x x, · VXt xt1Qs 

xy;j'[ ( '-\ 2v(v-x)).J 
--.-_-" 1+-j+ 2 

2vQs . Xt Xt 

p + x, + v 1Q,rl 
X,= , 

p -/-- Xt - v l'Qsl] 

___ r02adxdx1 {__1-[-~~-+vx L 
da" - + n•; . 2v3 p Kt Xt'X 3 2 Xi 

x.,(l.p- x) + x2 + v 1cJ.p 
Xz=ln·~~~~~~--~~ 

xz(/.p- x) + x3 - v yct.p 

c = Xz [xz(/.p- 2x) + 2x']. 
v' 

(23) 

(24) 

(25) 

(26) 

The total differential cross section with respect to the 
angles and frequencies is obtained on substituting the 
quantities found above into formula (22). 

6. We now go on to the case of bremsstrahlung ac
companying an electron-positron collision. In this case 
the cross section contains the squares of the contribu
tions of the scattering diagrams (the same as in the 
case of electron-electron scattering), the square of the 
contribution of the annihilation diagram in which the 
initial particle is radiating, and the interference terms 
between the diagrams indicated above. The square of 
the contribution of the annihilation diagram has been 
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found in[ 5J (formula (2.25)); taking into account the 
ultrarelativistic approximation adopted by us it has the 
form 

daa=~ia d: ,(1-j ){ll(In(2E)-~ ). (27) 

We note that from the law of conservation of charge 
parity ~ . ...1r- 1~ ·•a" ticks in this diagram at cik very end 
of the spectrum is created in the triplet state. 

We now write out the interference terms giving a 
contribution to the spectrum: 

+ -~~ -2v2 - vx4 - :x4" + ~2 (Sv- 3:x3 - 21'.2 ) J 
%2 l 2 

'\1 ( 3L'.') L',.2 [ ( L'.' \ l 
+~\ -v-x,+-.- +-<- -x2 +ll'\ v-~) 

:x, , 2 2x,:x3 ·, 2 J 

1 [ a• f L'.' \] 1 + -- 2v3 - 3v2ll2 + ~ '· 3v - -;- ) f· 
Xz%3 2 ' 2 

(28) 

The integration of this expression is carried out in the 
same way as in the case of electron-electron collisions. 
As a result of this we obtain 

dapi = _!o:a_ d£ {-£_ [5 + 11 + 2ln(21,)- - 1 ~1!LJ 
'A s 8 l'Tl 

- -y~ IF( 1+1'~ '-F( 1-iii )} (29) 
2 T ' 2 I 2 ' 

where the quantity L is determined by formula (11), 
while the Spence function F(x) is defined by formula 
(17). For p « 1 we have 

dap; = 0 + r02a d£ 0 ( 11"\ i:_). (30) s \ v 

The complete expression which applies to the whole 
bremsstrahlung spectrum in the case of an electron
positron collision has the form 

(31) 

and is given by formulas (10), (27), and (29). Near the 
end of the spectrum one must correspondingly substitute 
into (31) the expressions (12) and (27). 

7. We now make a few remarks with respect to the 
method of selecting the leading terms with the aid of the 
Schwarz inequality. To make the selection it is neces
sary to pick out the leading terms in the exact squares 
of the matrix elements of the scattering diagrams. The 
rigorous analysis that has been carried out shows that 
such a leading term, with an accuracy up to a logarith
mic factor in the differential cross section with respect 
to the angle and the frequency, is given, just as inl 3J, by 

(32) 

It turns out that an estimate made with the aid of the 
Schwarz inequality for the interference of the scattering 
diagrams for both processes does not depend on the 
photon frequency and has the same form as formula 
(20) inl 3J; in a similar manner one can demonstrate the 
disappearance of the contributions of the interference 
of diagrams (a', b'), (a, b'), (a', b) for the case of elec
tron-electron collisions. For an estimate of the con-

tributions of the interference of the diagram b' (emis
sion from final particles) and of the diagrams a, b for 
electron-positron collisions we utilize formula (2.35) 
ofl 5J. The leading term in the differential cross section 
for the emission by final particles has the form 

(33) 

so that it is of order 1/ v. But then the contribution of 
the interference of the diagrams indicated above does 
not exceed 

(34) 

and, consequently, is neglected as a quantity of order 
1/ v and not of order 1/ -IV, as had been assumed by 
Altarelli and Bucellal 4l). 

8. We now discuss the results obtained above. We 
note first of all that at, the end of the spectrum the 
square of the contribution of the annihilation diagram 
(formula (27)) contains the "large" logarithm ln(2 v), 
while at the same time all the remaining contributions 
to the cross section of both processes do not contain it. 
Therefore, at the end of the spectrum the bremsstrah
lung cross section for an electron-positron collision 
exceeds appreciably the bremsstrahlung cross section 
for an electron-electron collision2 >. This circumstance 
is related to the fact that the integration over the angles 
of emission of the photon in diagram (a') in the case of 
electron-positron collisions is carried out for a con
stant momentum transfer, i.e., the contribution comes 
from the whole region of variation of the angles at which 
photons are emitted. At the same time for scattering 
diagrams for p ~ 1 the transfer increases with an in
crease in K1 (in the limit the domain of integration de
generates into the straight line A 2 = K1). This is related 
to the fact that for p ~ 1 both final particles move in the 
same direction opposite to the direction of emission of 
the photon, and with increasing K1 (deviation of the 
direction of emission of the photon from p1) the angle 
between the vectors P2 and P4 increases, and this leads 
to an increase in A 2• 

These considerations also indicate that the angular 
distribution of photons in both cases has peaks in the 
direction of motion of the initial particles for any arbi
trary photon energy including the end of the spectrum, 
but at the end of the spectrum the angular distribution 
of the bremsstrahlung photons in the case of electron
positron collisions is considerably broader than in the 
case of electron-electron collisions. 

The shape of the ends of the spectrum for a specific 
energy E = 2000 is given in Fig. 3. Here there are 
shown: the bremsstrahlung cross section evaluated 
in[ 3J (curve 1), 

da,. = 4ro'all~(1- ~l[-1- + 1-s- ~]! 2ln 4EZ(1 - s) -1); (35) s . 1-£ 3 \ s 
the bremsstrahlung cross section dae (22) (curve 2); 
the bremsstrahlung cross section dap (31) (curve 3). 

The first of these cross sections has the same shape 
both for electron-electron and electron-positron colli-

2)The characteristic feature of the end of the spectrum of emission 
by an initial particle in the case of annihilation has been pointed out 
in[ 6 ]. 
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sions in the c.m.s. and l.s. and for the bremsstrahlung 
radiation in a Coulomb field (with an accuracy up to the 
relativistic recalculation of the energy in the argument 
of the logarithm). This fact is associated with the cir
cumstance that the main contribution is given by small 
transferred A2 and small scattering angles. At the end 
of the spectrum the situation is essentially altered. 
Firstly, as a result of recoil a kinematic difference 
appears in the case of bremsstrahlung accompanying a 
collision of electrons or accompanying scattering in a 
Coulomb field (for the limiting frequency E - w = 1/E 
in the former case and E - w = 1 in the latter case); 
secondly, interference and emission accompanying 
annihilation (for electron-positron collisions) becomes 
essential. Therefore, das (10) does not coincide with the 
ultrarelativistic limit of the formula for the bremsstrah
lung cross section in the case of a Coulomb field; more
over, dae (22) and dap (31) contain additional terms. In 
Fig. 3 it can be seen that in accordance with the asser-

tions made above at the end of the spectrum the brems
strahlung cross section for electron-positron collisions 
at this energy exceeds by a factor of several times the 
cross section for electron-electron collisions. We note 
that the latter characteristic feature is strengthened by 
the fact that in the second case daei (15) changes its 
sign near the end of the spectrum and becomes negative. 

We note in conclusion that the difference between the 
cross sections (22) or (31) and the approximate formula 
(35) essentially becomes noticeable only for p << E, i.e., 
E - w « 1. This range of frequencies makes a very 
small contribution to the cross section integrated over 
the frequency, since we have shown that at the end of the 
spectrum there are no local rises in the cross section. 
Therefore, approximating the whole spectrum by formu
las of the type (35) is sufficiently good, provided only 
that we are not specially interested in the end of the 
spectrum where one should utilize the exact formulas 
obtained above. 
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