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It is shown by means of reggeon diagram techniques that in the high energy region the production of 
hadrons in a definite kinematic configuration occurs independently for each hadron, if the quantum 
numbers of the hadrons differ from those of the vacuum. The kinematic region where this happens 
is the region where all pair energies are large, the transverse momenta of the two fastest particles 
are finite, and the transverse momenta of all other particles are very small. Under these conditions 
the production amplitude for n particles turns out to be proportional to the amplitude of a two-parti­
cle process, in the same manner as for the emission of soft photons in electrodynamics. 

1. INTRODUCTION 

GRIBOV [lJ developed a reggeon diagram technique 
for the computation of the asymptotic behavior of the 
amplitudes of two-particle processes. In the same 
paper arguments were given indicating that in case the 
momentum transfer is much smaller than the particle 
masses the most important contribution to the asymp­
totic behavior of the "enhanced reggeon diagrams" 
described in detail in [l]. 

The reggeon diagram technique can be generalized 
without difficulty to include the case of the transforma­
tion of two particles into three particles C2,3J. In [3J the 
authors have shown that under certain conditions the 
amplitude for three-particle production a+ b- 1 + 2 
+ 3 (Fig. 1) is proportional to the amplitude of the two­
body reaction a + b - 1 + 3. These conditions are the 
following. 

1. The pair energies si~2 and s~2 of the produced 
particles must be large (the ''genuinely inelastic 
case" [4J), and s 12s 23 ~ s ( s 112 is the total energy in 
the c.m.s.). In this case Ki = -ta1 (the square of the 
momentum transfer from the initial particle a to the 
produced particle 1) and K~ = - tb3 (the square of the 
momentum transfer from particle b to particle 3) 
(Fig. 1) remain finite. Only in this case do reggeon 
diagrams occur at all. 

2. Only the enhanced diagrams must be essential, 
which is possible when the momentum transfers I K1 I 
and I Kzl are much smaller than the particle masses. 

3. The momentum component of particle 2 perpen­
dicular to the direction of motion of the incident parti­
cles, i.e., I K 2 1, must be much smaller than the per­
pendicular components I K1 I and I K3 I ( K~ « Kf, Kn. 

Since K2 = K1 + K3 the latter condition signifies that 
Kf"" K~ = -e>. 

4. The particle 2 is emitted by the reggeon a, but 
owing to its quantum numbers it cannot be emitted by 

1>It is easy to see that the three-particle production amplitude F3 
depends in general on three variables s12 , s2 3 and t. The total energy 
s is expressed in terms of s12 and s23 : s = s1 2 s2 3 /m 2 (m is the mass of 
the second particle). 
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FIG. I 

the vacuum reggeon. (For example, the particle 2 may 
be a p meson and the reggeon a a p or K* reggeon.) 

If these conditions are fulfilled the amplitude F3 of 
the process a + b - 1 + 2 + 3 turns out to be independ­
ent of S12 and S23 separately and depends only on their 
product which equals sm~. The amplitude differs from 
the amplitude A( s, t) of the two-particle process 
a + b - 1 + 3 only by a constant factor y: 

F3(812, 823, t) = yA (8, t), 8 = 8 12823 / m2• ( 1) 

Equation (1) is a consequence of an identity which 
relates the Green's function of the a-reggeon, Gj (t), 
to the "vertex part" rj 1j2( t) (cf. Fig. 1) which deter­
mines the asymptotic behavior of the production 
process under the specified conditions. The relation 
between G and r is analogous to the generalized Ward 
identity in quantum electrodynamics, and its existence 
is determined by condition 4. The diagrams represented 
in Fig. 1 contain one a-reggeon line which carries a 
definite quantum number, "charge" (baryon number, 
isospin, etc.) and an arbitrary number of vacuum 
reggeons. Other reggeon diagrams, containing a 
larger number of "charged" lines, contribute an 
asymptotically small amount and thus there appears 
the conservation of some charge, running along the 
a-line, in a manner equivalent to the conservation of 
electric charge along an electron line in quantum elec­
trodynamics. Since, according to condition 4, particle 
2 can be emitted only from a charged a-line, the situ­
ation turns out to be very reminiscent of the emission 
of photons from an electron line in quantum electrody­
namics. The vertex part turns out to be related to the 
Green's function by a Ward identity. 

The present paper is devoted to a generalization of 
the result (1) to the case of n-particle production. Here 
we have to assume that conditions analogous to 1-4 
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must be satisfied. For the case of n-particle produc­
tion this means that all pair energies (squared) 
s12, ... , Sn-1,n must be large (their product 
S12S23 ... sn-1,n ~ s, cf., e.g.,CsJ) and the transverse 
momenta of the produced particles satisfy Ki, K~ « m2 
(in order that only enhanced diagrams be important). 
In addition the perpendicular momenta of the "interior" 
particles, KL ... , K~- 1 « Ki, K~. Here again Kf f:::l K~ 
= - t. If in addition condition 4, as formulated above, 
holds, it will be shown in the present paper that the 
amplitude Fn for the production of n identical parti­
cles is equal to 

Fn(S!2, ... , Sn-t,n;t) =yn-2A(s,t), s=SI2···Sn-t,nf (m2)n-2.(2} 

Equation (2) is a consequence of a relation which re-· 
lates the "vertex part" for many-particle production 
to the Green's function of the a-reggeon. This relation 
is a generalization of the indicated relation between the 
vertex part and the Green's function for three-particle 
production. The expression (2) for the amplitude Fn 
means that in the kinematic configuration under dis­
cussion the emission of particles occurs independently 
of one another. 

Section 2 contains a derivation of the "Ward identity" 
for the vertex part corresponding to n-particle produc­
tion, and also a derivation of Eq. (2). In Sec. 3 an ex­
pression is obtained for the cross section for n-particle 
production, integrated over the accessible (under the 
imposed restrictions) region of phase space. In the 
Conclusion the average number of emitted particles is 
computed for the given configuration. This number in­
creases logarithmically with the energy. Several con­
crete examples of application of the results are dis­
cussed. 

2. THE n-PARTICLE PRODUCTION AMPLITUDE 

Under the assumption that all pair energies s12, 

S23, ... , sn-1,n are large, the n-particle production 
amplitude can be represented as a Mellin transform of 
a function depending on the ( n - 1) complex angular 
momenta [3 J: 

j?(n)(s12, ... , Sn-1, n; X1, ... , Xn) 

(3) 

All integration pat)ls are situated to the right of the 
singularities of F~n) . . The amplitude F(n) . 

h···Jn-1 ll'··ln-1 
is determined by the sum of all possible reggeon dia­
grams as explained in detail in [3 J for the case n = 3. 
Formula (3) contains the constant ~ 0 which is equal to 
the value of the signature factor ~j for j = a ( 0) 
(a ( t) is the trajectory of the pole of the a-reggeon) 2 > .. 

This was done in order to bring into agreement the 
rules for computing reggeon diagrams for F(n) . 

l1· · ·ln-1 

2lin computing the asymptotic behavior with logarithmic accuracy 
(which is assumed when only amplified diagrams are considered) all fac· 
tors which have a weak dependence on j, in particular ~i• can be taken 
outside the integral for j = a(O). 

a 

\ 
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FIG. 2 

with the rules formulated in [1J for the diagrams which 
determine the Green's function for the a -reggeon. If 
the momentum transfers K1 << m 2 and o(nJy amplified 
diagrams are important, the quantity F.n) . be-

l1· · ·ln-1 
comes (Fig. 2) 

F;;~); n-t(Xt, ... , Xn) = g,g,G;, (Xt2)M;';.'_l;,,_1 (Xt, ... , Xn) G; n-l (xn2), (4) 

where Gj (K2 ) is the exact Green's function of the 
a-reggeon, the block M(n) J. is represented in 

lt· · · n-1 
Fig .. 2, and g1 and g2 are the coupling constants of a 
and 1, and b and n to the a-reggeon. 

The particles 2, 3, ... , n-1 are emitted from the 
a -reggeon line passing through the block M~n) . 

l1· · ·ln-1 
as explained in the Introduction. We now show that the 
quantity F~n) . can be expressed in terms of the 

l1· · ·ln-1 
Green's function of the a -reggeon, if all perpendicular 
momenta of the "internal" particles satisfy the in­
equalities I Kzl, ... , I Kn-1 I « I K1l, I Kn 1. Since mo­
mentum conservation implies K1 + ... +Kn = 0, the 
latter condition also means that Kf i:::l K~ = - t, so that 
all quantities in (3) and (4) depend only on one momen­
tum transfer. 

The amplitude Mf~l .. jn_1 ( t) can be decomposed 

into a sum of "irreducible" blocks, each of which does 
no longer contain parts connected by one a-line. For 
the case n = 5, for instance, this decomposition is 
illustrated in Fig. 3. The irreducible vertex part with 
two o!- reggeons and ( n - 2 ) emitted particles will be 
denoted by dn) . ( t). We now assert that 

l1· · ·ln-1 
dn) . ( t) satisfies the following "Ward identity" 

J • · · ln-1 

rcn> . (t) = ,_ n-• { G;,-1 (t) 
h···Jn-1 1 Y (j,- j,) Ua- j,) · · · Un-1- h) 

G. -1 (t) 
+ ( . . ) ( . ''. ) ( . . ) + ... h- !2 Ja- !2 • · · )n-1- ]2 

Gj~_, (t) } 

+ (j,- in-d (j,- in-d • • • Un-2 -)n-1) ' 
(5) 

where y is the coupling constant for the transition of 
the a-reggeon into an a-reggeon plus the emitted par­
ticle. 

In order to prove ( 5) it is necessary to consider all 
reggeon diagrams for the vertex part r(n). The inte­
grals corresponding to these diagrams contain products 
of different free Green's functions of the 0!-reggeon: 
Gzo> ( t) = [ l - a ( t}t', depending on the angular mo­
menta l = h - H:• where jk are the integration vari­
ables. Such products can be transformed by making use 
of the identity 

co> col G z,C0l (t) 
Gz, (t) ... G1N (t) = (l, -I,) ... (ZN -I,) 

G1,<ol (t) Gl~ (t) 
+ (l,-I,) ... {ZN-/2) +···+ (l,-lN)· .. (lN-1-lN) 

(6) 
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The latter relation can be checked easily by ob­
serving that both sides can be represented as the inte­
gral 

b+ioo 

~ ~c?1 (t) 1 (7) 
b-ioo2m (l1 -l) (lz -l) ... (lN -l) ' 

where the integration path passes to the right of the 
pole l = a ( t) of Gt> and is situated to the left of the 
poles: l = l1, •.. , lN. Closing the contour in (7) to the 
left we obtain the left hand side of Eq. (6), and closing 
it to the right we obtain the right hand side of the same 
equation. 

utilizing (6) it is easy to establish that in perturba­
tion theory the left hand side and the right hand side of 
Eq. (5) are equal, since the individual terms in ( 6) will 
either cancel mutually, or correspond to perturbation 
theory diagrams for the self-energy part of the a­
reggeon ~j ( t) = G;o>-1( t) - Gt( t). 

Summing sequences of diagrams of the type repre­
sented in Fig. 3 one(c;m see with the help of (5) that 
for the amplitude F.nJ . ( t) which determines the 

J1· · ·Jn-1 
asymptotic behavior of the process, there exists the 
identity: 

F(n)_ (t)- n-z{ G;,(t) 
'•···'n-! - g1gzv (h- il-)-" .. '-'.-'U-n--~---i~-)-

+ .. C;2 (t) . +···+ . . Gin-1<t> . }· (8) 
(11 -],) · · · (ln-1 -],) (11- ln_l) · • • (],__,- Jn_l) 

The right hand side of this identity can be written as an 
integral of the type ( 7), but containing the exact Green's 
function: 

b+ioo a· 1 
F·<n>. (t)- n-z I l G·(t) 

J•···'n-l - glgzy J z--:- 1 (' -.::-)-(:-.--.-) , 
b-ioo Jt! ]! - J • • • ]n-1- J 

Rej <Rei!, ... , Rein-!· (9) 

We substitute the expression (9) into Eq. (3). We 
integrate over j1, jz, ••. ,jn-1 by mean!) of clqsing the 
contour to the left, since the product s~~· .. sW-~1n 

' decreases when Rej1, ... , Rejn-1- - oo. Owing to the 
condition Re j < Re h, ... , Re jn-1 the poles in the 
j-plane (j = j1, ... ,jn-1) are inside the integration 
contour and we obtain: 

F'(n)(s12, S23, ..•. , Sn-i, n, t) 

Up to a constant factor, of which we can get rid by 
means of a redefinition of the constant y, the product 
S1a ... sn-1,n is the total energy s. The integral ( 10) 

together with the multipliers g1ga ~o represents the 
asymptotic form of the amplitude A ( s, t) for the two­
particle process a + b - 1 + n, and thus 

F<n) (s12, ... , Sn-1, n, t) = yn-ZA (s, t). (11) 

3. THE CROSS SECTIONS FOR INELASTIC PROCESSES 

Equation ( 11) allows us to find the cross sections for 
inelastic processes, integrated over the accessible part 
of phase space, as restricted by the kinematic con­
straints described in the introduction. The constraints 
related to the fact that all momentum transfers must 
be smaller than the masses do not seem to be very re­
strictive, since the admissible region includes almost 
all of the diffraction cone. However, the conditions 
IKal, · · ., IKn-1l « IK1I ~ IKn I= (-t) 112 restricts the 
integration to an insignificant part of the diffraction 
cone for the momenta Ka, ••• , Kn-1• The integrations 
over the lengths of Ka, ... , Kn-1 can be extended only 
up to Ko << ( -t) 112• Therefore the cross section 
computed below represents only an insignificant part 
of the total cross section for the process. On the other 
hand the restrictions imposed on the pair energies, 
m 2 << Sik << s are not very essential. This is related 
to the fact that for Sik ~ s the momentum transfers 
become large and the amplitude decreases rapidly, 
whereas the integration over the region where even one 
of the pair energies is of the order Sik ~ m2 leads to 
the loss of one power of ln s in the total cross section, 
as can be seen from the computation of phase space 
given below. 

The kinematic analysis (cf., e.g.,C5 J) shows that 
there exist ( n - 1) configurations of momenta of the 
produced particles in which all pair energies are large 
and the momentum transfers are smaller than, or of 
the order of, the masses. In these configurations the 
particles 1, 2, ... , n divide up into two groups, such 
that particles 1, 2, ... , c are emitted almost in 
parallel directions to the momentum Pa of the incident 
particle, and the particles c + 1, ... , n are emitted in 
the backward direction Pb = - Pa, in such a manner 
that the parallel components of the momenta in each 
group are large and are strictly ordered: 

k1 "};> kz ';?> k, "};> ... "};> k, "};> m, m ~ kc+! ~ ... ~ kn. (12) 

The momenta k1 ,;:o kn ~ Ya(s) 112. In all other cases 
either one of the pair energies turns out to be small 
( ~m2 ), or one of the momentum transfers is large. 

The expression for the part of the n-particle pro­
duction cross section under consideration is 

1 1 n d"pi 
L'.an = 2s (2:n:)3n-4 ~ ... ~ ~~ 2E, JF<nlj2. 

X <'I<'>(~ Pi- Pa- Pb). (13) 
1=1 

In view of (12) all parallel momentum components 
can be neglected inside the delta function, with the ex­
ception of k1 and kn. In addition, since I Kal, ... , I Kn-11 

« I K1 I ~ I Kn I one can neglect also the perpendicular 
components of the ( n - 2) "internal" particles. The 
phase space will decompose into the product of the two­
particle phase space of the first and n-th particle, suc­
cessive independent integrations over d2Ka ... d2Kn-1 
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and the integrations over dka ... dkn-1, which have to 
be done taking into account (12). Substituting (11) into 
(13) we obtain 

[ IYI 2 ~ Jn-2 
tl.an = a, -- d2x 

2(2n) 3 

(14) 

It is understood that if c = 1 (or c = n - 1) the inte­
grations over the ki in the first (second) parentheses 
are absent. 

A direct computation of the right hand side of (14) 
yields 

[fln(s/m2)]n-2 lvl' 
tl.an(s)=a,(s) f=---~d2x (15) 

(n-2)! 2(2n) 3 J · 

In view of what was said at the beginning of the 
present section, the cross section a a ( s) can practically 
be identified with the total cross section for the two­
particle process a + b - 1 + n, whereas ~an ( s) is 
only part of the total cross section for the process 
a + b - 1 + 2 + ... +n. The latter circumstance is a 
result of the fact that the integration over daK can be 
extended only up to I K I = Ko « m 3 >. 

We remark that the factor 1/( n - 2)! occurs in (15) 
due to the part of phase space admitted by the kine­
matic constraints and is not related to identity of the 
particles. Another factor of 1/( n - 2)! which should 
be there because of identity of the particles, cancels 
with a factor ( n - 2)! coming from taking into account 
the ( n - 2)! noninterfering reggeon diagrams with 
large contributions, which differ from one another by 
permutations of the identical particles. The expression 
(15) is thus valid for the production of nonidentical 
particles also, if they are emitted along the a -reggeon 
line only in a definite sequence. However, in this case 
I 'Y Ia m-a> should be replaced by the product 
I 'YaY3 • •• Yn-1 Ia where the Yi are the coupling constants 
for the emission of the appropriate particles. 

It is easy to find an example where the factor 
1/(n- 2)! will be absent from the expression (15). Let 
us imagine that along the a -reggeon line nonidentical 
particles are emitted which do not change the quantum 
numbers of the a-lin~ (such "particles" can be, for 
example, pairs 1111, KK etc. with fixed total masses). 
Then ( n - 2)! identical diagrams differing by permu­
tations of the pairs, will contribute, leading to a cancela­
tion of the factor 1/(n- 2)! in (15). 

4. CONCLUSION 

As examples of application of Eq. (15) one can con­
sider processes for which the asymptotic behavior is 
dominated by a boson pole of the type of a p-meson or 
a K*-resonance (taking into account Mandelstam branch 
cuts). We consider, for example the emission of p-

3lWe have asserted earlier that Ko <{(-t)Y2. It is easy to see that 
after integrating over t in ( 15) this condition can be replaced by 
IKol<{m. 

mesons. (As explained in [3 J, the application of formulas 
like (15) to the emission of pions and to processes for 
which the asymptotic behavior is dominated by a fermion 
pole, runs into difficulties.) 

Consider, for instance, 

n++p-+K++L:++np0, 

where a K* meson plays the role of the a -reggeon. It 
is easy to compute the part ~atot of the total cross 
section which includes the production of particles with 
the appropriate momentum configurations. We have 

tl.atot (s) = ~ tl.an (s) = ao(s) ( ~2 r ( 16) 
n=O 

If we had ao ( s) - canst for s - 00 , Eq. (16) would 
seem to be inconsistent, since llatot would increase 
with energy. However, our results are applicable only 
to the case when the asymptotic behavior of a0 ( s) is 
determined by an a-reggeon which carries quantum 
numbers differing from those of the vacuum (in our 
concrete example the a-reggeon is a K*, so that the 
cross section ao( s) ~ saa<o>-a decreases according 
to a power law as s increases). It is possible that the 
inapplicability of (16) to the case when the asymptotic 
behavior of O"o ( s) is determined by the vacuum pole is 
a sign of self-consistency of the theory. 

It is very likely that another variant is possible. The 
quantity r is proportional to K~, the limit of integra­
tion over the momentum transfers admitted by the con­
ditions listed in the Introduction. However, if a logar­
ithmic narrowing of the cone occurs as the energy in­
creases, it is not sufficient for the applicability of our 
results that the transverse momenta of the "internal" 
particles, I Kala, ... , I Kn- 1 Ia be considerably smaller 
than I K1 Ia ~ I Kn Ia = - t. It is also required that K~ 
............ a' ( . 1 ''m/lns 1=2, ... ,n-1), sinceotherwisethede-
pendence of the amplitude on Kf becomes essential, and 
the Ward identities based on the neglect of all Ki would 
not be valid. But then the quantity r in ( 16) cannot be 
considered c.?nstant for very large energies, and the 
factor ( s/m'")r may not increase. 

With the help of (16) it is easy to compute the aver­
age number of p 0 mesons: 

¢0 

~nan 
_ n=O S 
n=---=fln-

~O"tot m 2 ' 

( 17) 

which increases logarithmically if r does not depend 
on the energy. 

We now consider the emission of two kinds of neu­
tral particles, e.g. p 0 and A~. The cross section for 
the process of emission of n1p 0 mesons and naA~ 
mesons is 

(ftln(s/m2 ) )n' (f2 ln(s/m')) n, 
<Jn,n,(s) = ao(s) 

ndnz! 

The numerical factor in ( 18) comes about in the 
followi.ng way. There are ( n1 + na)! large reggeon 
diagrams which contribute identically and differ by 
permutations of arbitrary particles. In addition the 
phase space of the p -mesons must be divided by n1! 
and that of the A~ mesons by na!. We thus have 

(18) 

(nl + na) !/(nl + na) !n1 !na! = 1/nl!na!. Equation (17) 
now determines the average number of p0 -mesons for 
r = r1 (Ag-mesons for r = ra). 
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If we consider the production of charged p-mesons 
together with the production of P0 , we have 

(19) 

where no is the number of neutral mesons, nch is the 
total number of charged p mesons, The numerical 
factor in ( 19) can be obtained in the following manner. 
The sequence of p + and p- mesons along the reggeon 
line is strictly determined, since the K*+ can emit 
only a p+ and the K*- can emit only a p-. Therefore 
the total number of large diagrams is now equal to the 
total number of diagrams with all permutations, minus 
the permutations among p+ and p- mesons, i.e. 
N = ( no + nch ) ! [ nch ! / n+ ! n- !) -l ( nch = n+ + n- , n± are 
the numbers of p± mesons). The final numerical factor 
is obtained by multiplying N by 1/ (no + nch) !, coming 
from the phase space computation, and by 
(no ! n+ ! n- W\ which takes into account the identity of 
the p0 , p+, and p- mesons. 

From ( 19) it follows that 

no= foln(s/m'), iich =feb In (s/m2). (20) 

Since isospin invariance implies r ch = 2 r o, it follows 
that ilch = 2no or n. = ll- = noro ln (s/m 2 ). 

In conclusion we note that even if the amplified dia­
grams really contribute the main part of the amplitude 

and the theory is correct, its experimental verification 
seems to be very difficult. The results obtained are 
valid only under the rather unrealistic condition 
ln( s/m2 ) >> 1; in addition one must select cases be­
longing only to an insignificant part of phase space. It 
may be that it is the most realistic to observe the inde­
pendence of the cross section for n particle production 
of the pair energies, as discussed in detail in [3 J. 

We are grateful to V. N. Gribov, B. L. loffe, E. M. 
Levin and K. A. Ter-Martirosyan for very interesting 
discussions. 
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