
SOVIET PHYSICS JETP VOLUME 8, NUMBER 1 JANUARY, 1969 

Dl"N,L1IICS OF PROCESSES IN MEDIA WITH INHOMOGENEOUS BROADENING OF THE 

LINE OF THE WORKING TRANSITION 

E. I. YAKUBOVICH 

Gor'ki1 Radiophysics Institute 

Submitted January 24, 1968 

Zh. Eksp. Tear. Fiz. 55, 304-311 (July, 1968) 

We consider the behavior of the field and polarization of a system of two-level molecules having a 
spread of the transition frequencies. It is shown that when account is taken of the relaxation of the 
amplitude of the dipole moment and the population difference, the shape of the inhomogeneous 
broadening line becomes significant. In particular, the presence of a dip in the inhomogeneously
broadened line shape can lead to a pulsating attenuation of the field. We also consider the possibility 
of high-frequency oscillations connected with the inhomogeneous broadening. 

A consistent allowance for inhomogeneous broadening 
in the solution of problems involving the behavior of an 
electromagnetic field in a medium made up of active 
molecules leads in the general case to a system of in
tegra -differential equations for the field and for the 
dipole moment. Since investigations of such a system 
are impossible in the general case, processes in media 
with inhomogeneous broadening are usually considered 
by assuming a quasistationary de~endence of the polari
zation on the field (see, e.g. ['' 2 ' 3 ). In this case only 
the integral characteristics of the inhomogeneously 
broadened line are significant (total number of parti
cles, average frequency, average scattering, etc.). 
However, the quasistationary approximation is not ap
plicable in the case of the experimentally realizable 
systems. In these cases, the character of time varia
tion of the macroscopic dipole moment depends also on 
the inhomogeneously broadened line shape, leading to 
different new effects, which cannot be explained within 
the framework of the indicated approximation. The 
purpose of the present paper is to call attention to a 
number of such effects. In particular, it turns out that 
the presence of a dip in the inhomogeneously broadened 
line shape can lead to a pulsating attenuation of the 
field in the medium. We also find that under certain 
conditions fluctuations of the field amplitude and of the 
population differences, connected with the inhomo
geneous broadening, are produced in the active medium. 

1. INITIAL EQUATIONS 

We consider a medium made up of two-level mole
cules, whose transition frequencies have a certain 
spread. The equations for the density matrix p of one 
such molecule, interacting with the field, are well 
known: 

Op12 . 1 i 
---- zwop12 +- Pl2 = -(dE)n, 
ot T2 1i 

an 1 i • - + -(n- no)= 2- {(dE) Pl2- (dE) p12}, at -r, 1i 

n = P22- Pu, P12 = P21', d = d12 = d2,'. (1) 

The macroscopic polarization P is determined by the 
expression 

+oo 

P = ~ /(wo)Sp(dp)dwo, 

where f ( w0 ) is the distribution function of the particles 
with respect to the eigenfrequencies of the transitions. 
After making the substitution Pi = f ( Wo) p, we get 

i«> 

P = ~ Sp(dPJdwo 

(we omit the index i ). We shall henceforth use this 
notation, denoting nof by means of the new f ( w 0 ). 

Changing over to new variables l!z, !fo, and a, 

(here wr - arbitrary frequency lying somewhere in 
the middle of the line of the medium), we obtain from 
the system (1) the equations 

• 1 
a+iva+-a= f!n. 

T2 

n+-1-(n-/(v))= -2(/!'a+ f!a'), 
Tt 

-fP = ~ adv, (2) 

where 

'V = <llr·- roo, {£ = i(dtf!t) /li. 

These values do not take into account the spatial 
dispersion, and consequently also the motion of the 
molecules. However, in those cases when the spatial 
dispersion of n can be neglected, and it is possible to 
confine oneself to account of only the Doppler shift 
11 = k · v for a, the system (2) describes the behavior 
of a gas of two-level molecules with inhomogeneous 
broadening due to thermal motion. 

It should be noted that whereas in the quasistationary 
case, to obtain the average dipole moment it is suf
ficient to know one distribution function f ( 11 ) , in the 
present case we need for this purpose three distribution 
functions: f ( 11), the initial population difference ni ( v), 
and the initial dipole moment ai ( v ) . 

An essential feature of the equations in (2) is their 
linearity with respect to the average functions. There-
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fore, if for some aggregate f1 ( v ), nn ( v ), and an ( v) 
we obtain equations for the macroscopic polarization 
:1'1 and for f2 ( v ), ni2 ( v ), and ah ( v) we obtain equa
tions for ·"'2' then the distribution functions f1 + f2, 
nil + nb, and ail + Gi2 will correspond to a macro
scopic dipole moment ff' = .'1\ + .'1'2. In this connection, 
the arbitrary distribution functions f, ni, and Gi are 
naturally represented as a superposition of functions 
for which the material equations .are obtained in the 
simplest manner. As will be clear from the problems 

The differential equations (2) describe a system 
with an infinite number of degrees of freedom. There
fore there is no system of differential equations valid 
for an arbitrary distribution function in the case of 
the macroscopic polarization. These equations must 
be obtained individually in each concrete problem. In 
the present article we consider two such problems: 
the relaxation of the dipole moment and of the field in 
a medium with inhomogeneous broadening, and low
frequency population oscillations. 

2. PULSATING ATTENUATION OF THE FlELD 

We start with the simplest example of the time be
havior of the macroscopic polarization of non-inter
acting particles at specified initial conditions in the 
absence of a field. In this case the polarization of one 
molecule has in terms of Laplace transforms the form 

a( v)- cr;(v) · (3) 
p, - p + iv + 1/tz ' 

here Gi ( v) - initial dipole moment. According to (2), 
we obtain the transform of the macroscopic polariza
tion: 

-f«> 

~(p) = ~ Gj(V) Wv. 
-~ p + iv + 1/tz 

(4) 

If the function Gi ( v) tends to zero when Im v - - oo, 

then the value of J" ( p) is determined only by the 
residues of this function in the singular points of the 
lower half-plane. One of the simplest functions of this 
type, having only one simple pole in the lower half
plane, is a distribution function of the Lorentz type: 

.'1'·~ 
crdv)= 1 

n[(v-a) 2 +~2] 
(5) 

Here a - displacement of the average frequency rela
tive to wr, {:3 - width of the distribution function at the 
0. 5 level, and .'f>i determines the initial value of the 
polarization. For such an elementary function, the 
average dipole moment is 

- .'J'i 
51 (p) = p + i~.a-+-~=---+-:1-:/-tz ' 

corresponding to the differential equation 

iP + iaff' + (~ + 1 I Tz) ff' = 0 

with initial condition !f> ( 0) = :1\. 

(6) 

(7) 

Thus, for a distribution function of the Lorentz type, 
the average polarization is described by a first-order 
differential equation, the solution ·' · ( t) of which os
cillates with the average distribution frequency a and 
attenuates with a decrement equal to {:3 + 1/T2. There
fore, the "broader" the distribution, the faster the 
attenuation of .:f' ( t). It is obvious that a superposition 

of functions of the type (5), 

"" 5I ikP" Gj~V)= LJ . -
· ~ n[(ak-v) 2 +~A2] 

corresponds to the system of equations 

5I (t) = ~ ff'k(t), 
A 

.~\+iaAff'A+ (PA+1f,;z)ff'A=0, ff'A(O) = Y'iA· 

This explains the rather unique behavior of the system 
of molecules in which the distribution function of the 
initial conditions is of the form of a sum of two func
tions of the Lorentz type - with large width {:31 and 
positive area, and with a small spread {:3 2 and nega
tive area -i.e., broadening with a narrow dip: 

.'1' i1P1 ff' zPz 
cri = n[v2 + p,2] n[v2 + ~z2]' •• 

where {:31 >> f3. and 5"il > .'1'iz > 0. 
The total value of P will be the sum of two ex-

ponentially damped quantities: 
-~ ... 

ff' = ff' i1 exp{- (~t + 1/,;z) t} - :J'iz exp{- (~2 + 1/,;z) t}. 

At the initial instants of time, the polarization is de
scribed both by the parameters of the broad distribu
tion and by the contribution of the narrow dip; however, 
after a time 1/{:31, the first term :1'1 can become much 
smaller than the long-lived polarization .<?2 due to the 
dip, even if :i"iz << :1 h· If furthermore such a dip is 
produced not at the center of the broadening line, then 
initially the dipole moment of the system will have two 
frequencies equal to the frequencies of the center of 
the broadening line and the center of the dip. Then the 
component with the central frequency attenuates 
rapidly with a time on the order of the reciprocal width 
of the broadening line, and we are left with the com
ponent with the average frequency of the dip, the char
acteristic lifetime of which is equal to the reciprocal 
width of the dip. 

By way of a more complicated example, let us con
sider the influence of inhomogeneous broadening of 
Lorentz type 

No~ 
f(v)= n{v"+WJ (8) 

on the change of the amplitude of the field ~ in a 
resonator, assuming that initially ( t ~ 0) there took 
place stationary generation, which was then interrupted 
by a jumplike change in the losses. The distribution 
functions Gi ( v) and ni ( v) will have dips that depend 
on the amplitude of the stationary generation I o: 

(1/,;z- iv)f(v) 
Gi(v)= ~0 v2 + 1/"tz2 +4l~ol'"t"J/,;z ' 

(v2 + 1/,;:})j(v) 
n i ( v ) = ----::~-:-;-'":-::-;:-~":-::'--;-

v2 + 1/1:"22 + 41 ~ol"tt/,;z 
(9) 

For simplicity we confine ourselves to those cases 
when it is possible to regard the amplitude of the field 
~ as independent of the coordinates. The change of the 
amplitude at t > 0 is described by the equation 

i£ + g~ = y:J', (10) 

where g - loss coefficient, equal to go << g at t < 0, 
y = 27Td2wr /ti is a constant, and <5 ( 0) = ~o. If the 
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jump of the loss coefficient is sufficiently large, then 
in the initial instants of time the term y.'Y' in (10) can 
be neglected, and the field will be described with a 
high degree of accuracy by the expression ~ = ~oe-gi. 
Mter a time on the order of 1/g, the quantities g~ and 
yf!J become comparable, and the term yfP can no longer 
be described in general. Therefore, to describe the 
field, a complete system of self-consistent equations 
for .o and fJJ is necessary, thus greatly hindering the 
investigation. However, at that instant of time, if the 
losses are sufficiently large, the field will be so small 
that the material equations for ff' can be regarded as 
linear in cr. In this approximation, the equations for n 
in the system (2) will not contain the term -2 ( c!.' *a 
+ Ia* ). Then the Laplace transform of the macro
scopic response to the field E is given by 

gi(p)= I [8:{ n~!~J:' }+cr,;J (p+iv+ 1/t2)-1 dv, (11) 

where the symbol ! denotes convolution with respect 
to p, and the functions j ( v ) , ai ( v ) , and ni ( v) are 
given by expressions (8) and (9). Contribution to the 
integral will be made by the residues at the singular 
points: 111 = -if3, characterizing the distribution func
tion f(v), and 112 = -i {1/T~ + 41 e'oi 2TdT2 }112, which 
determines the width of the dip as a result of station
ary generation. Accordingly, the polarization breaks 
up into two parts: fJJ = ;Pl + fP2, where .f'2 is due to the 
presence of the dip in both distribution functions. After 
evaluating the integral (11) and taking the inverse trans
form, we obtain the following system of equations for 
p ( t): 

with initial conditions 

- ft oi\'o GJ!J {g .,1\'o~ 
.'1',(0)= ~(II•-::.:_~,/T,2)' u ,(O)=~f:l'-a'/ri}' 

N(O) = N0 f:l' - 1/r'' N,(O) =- N0 ~(a'- 1 ) 
f:l'- a2/T22 ' a<z(f:l'- a2/tz2) 

The system of equations (10) and (12) determines the 
behavior of the macroscopic polarization and the 
field11 . 

For the case of strong inhomogeneous broadening 
( {3 » 1jT1,2, g) it is possible to assume that :1' 1 

~ 18N/f3 ><:: ISNo//3. The influence of fP1 on the field then 
reduces in fact to replacement of the coefficient g by 
the quantity yNo/f3. In view of the fact that g » yN0 /{3, 
this correction, and consequently also .'i\, can be 
neglected. Taking the foregoing into account, we obtain 
a solution of the system (10), (12). It is given by the 
product of an exponential and a cylindrical function of 
an exponentially damped argument 

{ ( a+1)} [ l/(a2 -1)go ( 1\l 
{g (t) = exp - . g + -- t Zq 2<1 V exp, - -;-- 1 J . 

I T2 '1"2 \ 2Tt 

owe note that the problem of relaxation of the field in a half-space 
of active medium with inhomogeneous broadening reduces to the same 
system, if a strong electromagnetic wave of amplitude 8. 0 is incident 
normally on its boundary at t <;;; 0, and if 8. 0 = 0 at t > 0. 

ri&J 

~/\.~ 
0 

FIG. I. 

Here Zq (x( = C1Jq, where Jq and Nq are Bessel 
functions of the first and second kind, q = T1 ( g 
- ( ct + 1 )/r2 ), and the constants C1, 2 are determined 
by the initial conditions. 

This function describes a pulsating attenuation of 
the field, with a finite number of pulsations (see Fig. 1). 
Such a variation of the field relaxation is the cons e
quence of the fact that the dipole moment is propor
tional to the area of the dip N2. In fact, N2 is a de
creasing negative quantity. If N2 were constant, then 
at 

Nz<- (g-(a+1)/T2) 2 

4.y 

there would be realized a regime of pulsating field 
attenuation with an infinite number of pulsations. 
Naturally, such a regime is produced even if N2 is 
variable but the dip is sufficiently deep (sufficiently 
large negative N 2), the only difference being that as 
a result of the decrease of I N2l (''clogging" of the 
dip), the number of oscillations will be finite. Obvi
ously, the smaller the stationary generation, the 
larger the dip and the larger the number of times that 
the amplitude of the attenuating field will vanish. In 
particular, at T1 = T2 = 1.3 x 10-7 sec and g = 3 
x 107 sec-\ it is necessary to have an excess ct 2:5 
above threshold to reach at least one zero. The quali
tative time dependence of the intensity of the field 
m = I E 12 is shown in Fig. 1. In the approximation in 
which "the polarization follows the field," such a 
pulsating attenuation of the interrupted generation can 
obviously not be considered. 

3. OSCILLATIONS OF ACTIVITY 

Another effect connected with inhomogeneous broad
ening is the possible occurrence of low-frequency 
oscillations (compared with the optical frequency) of 
the concentration of the excited particles and of the 
amplitude of the field I - oscillations of activity. 
These oscillations are connected with the delay of the 
response of the inhomogeneously broadened medium to 
the field 0 ( t). Generally speaking, oscillations con
nected with the finite relaxation time of the response 
exist also in the case of homogeneous broadening [41 . 
However, as will be shown below, in media with in
homogeneous broadening there can be low-frequency 
oscillations that are essentially connected with the 
broadened line shape, and thus, are due only to the in
homogeneous broadening. 

In order not to obscure the effect, let us consider 
the problem in its simplest formulation. As before, 
the amplitude of the field is assumed to be independent 
of the coordinates and determined by Eq. (10). Let 
also T1 = T2 = T. We assume that the distribution func
tion f ( v) has a narrow dip, so that 

Nf:l Nf:l f(v)= 1 1 ___ .:_2__' 
n [ v2 + ~ 12] n [ v2 + ~,2] 
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FIG. 2. 

where N1 > N2 > 0 and fJ1 » {32. If we find the values 
the parameters for which all the stationary states in 
such a system are unstable, then this will be the 
region where low-frequency oscillations certainly 
exist. 

In the stationary state, the field frequency may not 
coincide with the central frequency of the broadened 
line, even if the natural frequency of the resonator does 
coincide with the center of the line. This frequency 
shift ll and the amplitude of the stationary oscillations 
are determined by the equations 

-j-oe 

(i~+g)~st=V ~ cr,1dv, 

(ill+ iv + 1 I ~)!Jst = &.stnst, 

_!(n,8t- /)= -2(.Wst•!Jst' + .W.,t'O',st)· 't 
(13) 

The calculations are greatly simplified if it is assumed 
that {31 » g, 1/T, and {32 << 1/T. Then the conditions 
for the existence of a stationary regime with ll = 0 will 
take the form 

vNz't+K<v:.'<2g or g<yN2'f<(v~1 Y/4g. 
The limit of this region is shown by curve I of Fig. 2. 

It is easy to verify that for stationary regimes with 
a detuning we get 

~ = ±{ vN·-CZ'Y I (gt+ 1)• }"' 

I yN, )z 1 1 
m=I.Wstl•=, ~ 4(gt+1)2 4t•. 

From this we get the condition for the existence of 
these regimes: 

yNt't I~~> g't + 1, yN2 > (yN, I ~·) 2 I (g't + i)Z. 

These inequalities determine the region between the 
broken curve III and the parabola II of Fig. 2. 

The instability of the zero position of equilibrium 
( m = 0) is satisfied for 

yN, I~~> max{g + 1 It, yN21: + g}. 

(self-excitation conditions). In Fig. 2 this region is 
located to the right of the broken line III. It can be 
shown that the limit of the instability of the regime 
with ll = 0 is determined by a curve that can be 
expressed parametrically in the form 

yN,t I~.= 6[2g1:- (g1:- 1H"l. 
yN2t = q,•[gt- (gt -1)~], 

where ~ is the running parameter. As seen from Fig. 
2, this curve differs greatly for gT > 1 (curve IV of 
Fig. 2a) and for gT < 1 (curve IV on Fig. 2b). 

Thus, for the parameters ll'1 = yN1 T /fJ1 and a2 
= yN2T2, which lie in the shaded region on Figs. 2a 
and b, there exist activity oscillations. It is inter
esting to note that in order for oscillations to occur 
when g < 1/T it is necessary to have a dip in the 
distribution function f ( v) ( a2 I 0 ). 

4. RESPONSE AT LARGE v 

The simplicity of the equations obtained for the 
distribution functions of the Lorentz type makes it 
important in practice to ascertain the possibility of 
expanding an arbitrary f ( v) in a sum of a finite num
ber of Lorentz functions. Leaving aside the approxima
tion problems, we consider only the related question of 
the behavior of the response on the "tails" of the dis
tribution function, which is of independent interest. 

For sufficiently large v, the value of rJ ( v, t) can 
be easily determined for an arbitrary form of f ( v ). 
Indeed, let v >> 1/T1, 1/T2, 1/Tp, I 0 I ( Tp - character
istic time of variation of the field amplitude). Then the 
solution of the equations for a can be sought in the 
form 

0' = C(t)e-ivt, 

where C ( t) is a function of the time which is slow 
compared with e-ivt and is given by the equation 

C+~C=.Wneivt, (14) 
't2 

The superior bar denotes time averaging over the 
period 27T jv. The amplitude of the field 15 is taken 
outside the averaging sigl)., since v » 1/Tp. We deter
mine the value of n11 = newt from the second equation 
of the system (2) 

or 
- ivnv + __!_ nv =·- urc 

't! 
- 2S'. 

nv=· C. 
- iv + 1/t, 

Substituting this expression for nv in (14) we find 
that at large values of 11 

{ t 2 
cr = oi; ( v) exp ----:-. --:--:-:-

t? -1v + 11-r, leW 12 dt- ivt} 

~a; (v)exp{- :. - ivt} 

Here rJi ( 11) - value of rJ at t = 0. 
Thus, for sufficiently large v, the quantity 

rJ ( 11, t) does not depend on f and tends to zero with a 
characteristic variation time on the order of T2. Ap
parently the most important consequence of such an 
asymptotic behavior of rJ is the possibility of regard-
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ing f ( v) in a finite interval, thus greatly facilitating 
the approximation problem. 
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