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We consider a system of two coupled parabolic terms which are arranged in a resonance position and 
which interact with a medium; this is used as a model for a fluorescence center in a liquid or a crys
tal. In the limit of weak friction we get a set of coupled kinetic equations which describes the electron
vibrational relaxation inside the center in the quasi-classical region. The transition rate found differs 
from the one evaluated by Landau and Zener. 

WE have earlier[11 considered the problem of the re
laxation in a system of two coupled parabolic terms 
interacting with a medium. Such a model reflects most 
of the important features of internally quenched radia
tionless processes such as intercombination conversion 
which occur in luminescence centers in crystals and 
li.quids. The results obtained referred to the case where 
there was a sufficiently weak coupling between the terms 
when in a well-known sense the interaction of the system 
with the medium was stronger than the interaction of the 
states of the system with one another. This made it pos
sible to restrict ourselves to assuming that the vibra
ti.onal states of both states were in statistical equili
brium. This approximation which is physically justified 
in many cases (see, e.g., [21 ) may turn out to be inappli
cable to describe fast conversion processes observed in 
activated laser crystals and in a number of organic 
molecules in solutions (see [3 1). The best studied sys
terns of this kind are ruby activated by chromium ions 
(cr3+) and N-heterocyclics in liquids. The characteristic 
time for the intercombination conversion 4T2- 2E are 
of the order of 10-9-10-12 sec (an upper estimate is 
provided by the moment the R-lines occur after excita
tion of the ~ 1 state and a lower estimate by the width of 
the phononless peak 4A2- ~2). The transitions 
Bn1T*- T1T1T* and S1T1T*- T1T1T* occur in most N-hetero
cyclics within about 10-9-10-10 sec. By virtue of multi
plicity exclusion, the Landau- Zener parameter 1i is 
usually estimated to be 10-8 for the processes consid
ered, so that use of the simple Landau- Zener formula 
yields the value 10-7-10-8 sec. The more exact relation 
for the transition probability found in [11 may also turn 
out to be inapplicable. (The widths of the vibrational 
states of the system are 1010-1011 sec-1 and are com
parable with the splitting of the levels appertaining to 
different states which are 1010-1011 sec-1.) This means 
at the same time that the interaction of the terms is no 
longer sufficiently large and the problem is a non
equilibrium one with respect to the vibrational sublevels 
of the system. 

We start the study of a model with weak interaction 
bEltween the system and the medium with the equation 
for the complete density matrix in the interaction repre
sentation 

iJp = -i[V(t),p]. 
iJt (1) 

Here (:l'i = m = 1) 

V(t) = eiHtV~-iHt, (2) 

- p' w• 
H=ll+/',.Hcr.+2~cr.; H=y+ 2 x2 +H, 

(3) 
!'ill = Fx + M, V = axq, 

x and p are the coordinate and the momentum of the sys
tem, Hs the Hamiltonian of the medium about which we 
shall make some assumptions in the following, q the 
coordinate of the medium, F, t.E, {3, and a are constants 
determining the mutual position and the coupling of the 
terms with one another and the interaction of the system 
with the medium. 

It is natural to use the Hamiltonian (3) for sufficiently 
small {3; when the coupling of the states is strong one 
should change in (3) to an adiabatic base [41 

H = ll + /',.Hcr. + 2iBcry, t,.H = [(Fx + t,.E) 2 + 4~2]'1,, (4) 
d 1 

B=g' dx +2(', 
1 2(:! 

g = - arctg --'---
2 Fx+/',.E 

In second-order perturbation theory in V we have 
-r+t t' 

p(t+-r)-p(t)=- ~ dt' ~ dt"[V(t'),[V(t"),p(t)]]. (5) 

Here and henceforth we assume that one of the following 
inequalities is satisfied: 

(6) 

(1/y is the correlation time in the medium, wn the Debye 
frequency) and this enables us to average the density 
matrix and the operators acting on it separately over 
the coordinate of the medium and finally it enables us 
to assume in (5) that 

() Spp(t)exp(-ll,/kT) 
p t -+ . 

Spexp(-ll,jkT) 
(7) 

The advantages of the Hamiltonian (3), (4) now become 
clear since the operator xis diagonal in the a-repre
sentation and those terms in the equation which are con
nected with transitions of the system from one state to 
another can easily be split off. Writing 

p=(PI f)12)' 
P21 P• 

v=(vl v12 )' , 
V21 v. 

we get for P1 the following equation: 

(8) 

(9) 
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The first term on the right-hand side of (9) describes 
transitions between the vibrational levels of state 1 and 
has the form 

"t+t t' 

Dp1 =- ~ dt' ~dt"(V1 (t')V1 (t")p,-/-p,V,(t")V,(t') (10) 

- V1 (t')p1V1 (t")- V1 (t")p1V,(t')]. 

Transitions between the states 1 and 2 are determined 
by the terms 

t+t" t 1 

Tp, =- ~ dt' ~ dt"[V1z(t') V21 (t")p1 + p1V12 (t") V21 (t')], (11) 

t+r t• 

Tp, = ~ dt' ~ dt"[V,,(t')p,V,,(t")+ v,,(t")pzV,(t')]. 
t t 

The interference terms in Eq. (9) have a more complex 
structure: 

t+'t t' 

/ 1p,2 =- ~ dt' ~ dt"[- V1 (t')p12V21 (t") (12) 
t t 

- V, (t") p,, V21 (t') + p12( V,, (t") V, (t') + Vz(t") V,, (t')) ], 

t+-t t' 

/zpz, =- ~ dt' ~ dt"[- V,2 (t')pz1V1 (t") 
t t 

We choose as the base for the transformations in 
(10)- (12) the eigenvectors of the equations 

Ho'ln) = Enln), Ho'lm) = Emlm), (13) 

where 

and, depending on the magnitude of the coupling between 
the terms, AH is determined by Eqs. (3)-(4). Writing 

P1nn = Pn, P2mm =' Pm, 
(niV,In') =(niVIn'), 
(niV,,Im) = (niVIm), 

P12.nm = Pnm, P21mn = Pmn, 

(miV,Im') = (ml VIm'), 
(miV,,jn) ='(miVIn) 

and considering the matrix element of the left-hand side 
of (9), which is diagonal inn, we find the following ex
pression for the "diffusion" term of the equation: 

t+'t" t 1 i=1 

Dpt=- ~ dt' ~ dt"~[(niV(t')ln+i) (n+iiV(t")ln) (14) 
i=-1 

+ (nl V(t") In+ i) (n + il V(t') ln)](pn- Pn+t). 

It is exact for small {3 because of the linearity of V(x). 
At large {3, matrix elements such as (niVIn +i) (i > 1), 
which have not been taken into account, decrease rapidly 
with i in the quasi-classical region [51 , which is the 
region considered in the following: 

We have dropped in Eq. (14) also terms containing ele
ments of the density matrix of the system which are 
off-diagonal inn; this is permissible when 

(J)1:~1. 

When the terms are in a resonance position, 

E" - Em = kow, ko = LiE / w (15) 

(ko = integer) the expression describing transitions from 
one state to another has the form 

t+L f' 

Tp, + Tp, =- ~ ad dt"((n I V(t') lm) (ml V(t") In) 

+ (nl V(t'') lm) (ml V(i'lln)) (Pn -pm). (16) 

We have dropped here matrix elements such as 
(niVIm + v) (v > 0) which, as will become clear from the 
following, are small compared to the ones taken into 
account, if 

kc' / n, ko2 / m ~ 1. 

The resonance character of the level position (15), 
which can be postulated for small {3, is recovered also 
for {3/w >? 1 in the quasi-classical region, and (16) is 
therefore valid also in the region of non-adiabatic coup
ling. The assumptions made are sufficient in order that 
we obtain for the interference term in Eq. (9) the ex
pression 

1 t+t t' 

/ 1p,,+Izp21 = - 2 ~ dt' ~ dt"[(niV(t') lm)((miV(t") lm) (17) 
t t 

- (nl V(t") n)) + (n I V(t") I m) ((m I V(t') I m) 
- \nl V(l') jn))] (,pnm- Pmn). 

The mixing of the states In) and lm) in the relations 
obtained occurs when we take into account the adiabatic 
{3/w « 1 or non-adiabatic {3/w » 1 coupling, but the 
operator x does not couple them. To show this explicitly 
we consider the S-matrix corresponding to non-adiabatic 
transitions 

e'IIt = e'""'S(t), H0 = ll + I':J.Hcr,. 

The following formulae are then valid: 

(niV(t) lm) = a((niS(t) ln)(nlxq(t) ln)(niS-1 (t) jm) 
+ (niS(t)m)(mlxq(t) lm)(miS-'(t) lm)). 

(nl F(t) In)= a((niS(t) ln)(nlxq(t) ln)(niS-'(t) In) 
+ (niS(t) lm)(mlxq(t) lm)(miS-1 (/) In)), 

(niV(t)ln±D= 
= ae'fiwt ((n I S(t) In) (n lxq (t) In± 1)(n ± 1IS-1 (t) In± 1) (18) 

+ (n IS(t) I m)(m lxq(t) I m ± 1)(m ± 1IS-1 (t) In± 1) ), 

to obtain these we had to assume that the splitting of the 
levels of the first and the second states due to the coup
ling of the terms Anm (see Fig. 1) satisfies the condi
tions 

Linm~W, Linm"t~1, (19) 

which allows us to disregard in (18) the off-diagonal 

FIG. I. 
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elements of the S- matrix such as (nl SIn+ v) , 
(niSim± v) (v > 0). 

All the following results use in an essential way the 
detailed form of the S-matrix which as we have shown 
in 161 can be found in the region above the intersection 
po:int 

after N periods as 

S = sN, (20) 

where 

s = : e-26 + ( 1~- •e-26 ) e2i<, - 2ie-61"1- e-26 sin-.:) 

- 2ie-6 l"1- e-20.siwr, e-26 + (1- e-26)e-2ir, (21) 

6 =• rr~/F-J(wn') is the Landau-Zener parameter, n' = n 
- no, 7 is the difference in phase of the waves corre
sponding to the states 1 and 2 between the point of inter
seetion of the terms and the turning points. When (19) 
and (20) are satisfied we can also introduce a continuous 
time putting 

Then 

Here 

Then 

N = wt / 2:n:. 

c . . ( L sin ~nnJ +cos ~nmt, K sin ~nmt ) .,,,,,(!)= i . 
' A sin Snml, - L sin ~nmt +cos Snmt, 

• - 1 
~nm- --CpCt), 

2:t 

COS cp = e-26 + (1- e-") COS 2T, 

. ( 1 - e·-'6 ) sin 2-.: 
L=l . , 

~mcp 

. e-6 1"1- e-26 sin-.: 
K = - 2t ---------. 

sin cp 

s+s = 1 (Det s = 1), 

(22) 

(23) 

wh:ich reflects the condition of conservation of current. 
Using the equation found in [SJ for the eigenvalues of the 
problem with coupled parabolic terms 

e-'6 cosy, cosy,+ (I- e-26 ) eos (y1 +-.:)cos (y2- -.:) = 0, (24) 

where y 1 and Y2 are the actions in the states 1 and 2, 
one can show that under the resonance conditions (15) 

li we now assume that the spectral density of the 
eorrelation function of the medium 

~ 

R(;;,)=} e-i;;1Sp,(q(O)q(t))dt 

changes little near w, and using the relation 
(set~, e.g.,!71 ) 

R(-w) = BR(w) (8 = ew,kT), 

we find 

(26) 

(27) 

Dp1 == 1:[- (VVn, n+18 + Wn, n-,) Pn + (Wn, n+I8Pn+1 + Wn, n-1Pn-1) ]. 

Here 
(28) 

Wn, n±l = 1/,a2R(w)S-1[ (vn±) 2JI?H2 + vn±um±M!ll'vl,,K' 

+ (u,n±)2JI?222J(4]; (29) 

vn±=(nixln±l), um±=(mixlm±1), (30) 
,11'112 = (L'- L2 + 2), 11?,,2 = 3/, M11M22 = - (1- 3L2). 

It is clear that the diffusion along the vibrational levels 
of the first term is appreciably altered due to such 
processes which lead to transitions to a second state 
with a subsequent change in the energy of the system 
due to the interaction with the medium. One can assign 
diagrams to Eq. (29) (Fig. 2) which are convenient to 
use for an analysis of more complicated cases. 

If R(~;) changes little also for small values of its 
argument, it follows from (16) that 

(31) 

where 

Wnm = - 1/,a2R(O)znm2M11M22, Znm =(nix in) -(mlxlm), (32) 

to which the diagrams of Fig. 3 correspond, the second 
of which is repeated twice. 

There remains only for us to estimate the interfer
ence term (17). To do this it is sufficient merely to 
calculate the elements of the S-matrix which are off
diagonal in n and m assuming that Snn = Smm = 1. When 
(19) is valid, 

sin!lnmt 
/1P12 + /2p21 = J-,..--(pnm- Pmn). 

Llnm 

J ~ a2Znm2R(O)K(1 + 1/,K2). 

Assuming that 

I/ flnm .q; W nmK"t, 

we get finally, when 
Wn,n±tt', 

(33) 

(34) 

the following set of kinetic equations for the populations 
which are already written in differential form 
(Wnm = WnmK'): 

apn - - -dt = -(Wn,n+IS + W n,n-I)Pn +(W n.n+ISPn+l 

+ W n,n-1 Pn-1)- W nm (Pn - Pm), 

apm - - ) 
-af = - (W m,m+IS + W m,m-1 Pm 

+(Wm,m+i8Pm+1 + Wm,m-1 Pm-1)- Wmn(Pm- Pn). (35) 

In (35) Wm,m± 1 is obtained by replacing n by min (29) 

and Wnm = Wmn· Moreover, in (35) we have averaged 
over the large phase difference 7: 

1 " 
W =-:,:;- ~ W(-.:)d-.:. (36) 

0 

It is clear from (23) that 

FIG. 2. FIG. 3. 
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(37) 

and K and K3 , which are needed only for estimates, are 
given by: 

- { 1, K'-- , Ce-0, (38) 

These equations, and also the inequalities (6), (19), (33), 
and (34), enable us to write down the final criteria for 
the applicability of the basic set (35) in the quasi- classi
cal region: 

Wn, n±t, Wm, m±t. Wnm~ wl'6," v(wv), 

Wnm ... 
Wnm---~will, 1!~1, 

Wn,n±1 
(39) 

m,m±i 

(1) ~ 
Wnm~l\' v(wv); Wn,n±t, Wm,m±t~wb, v(wv). 

Wnm e0 
W,m-W ~w_.--, 6~1. 

n,n±1 v 
(40) 

m'm±l 

It is clear that the equations found here which corre
spond to a different character of the transition compared 
with the one found by Landau and Zener, are inapplicable 
for very small and very large 6, i.e., in the regions 
where the multiplicity of the passage is unimportant and 
where one can use the results of[ll. Of course, (35) can 
likewise not be used in the region close to the maximum 
of the probability near the point of intersection of the 
terms (see in this connection [BJ ). 

The set of coupled equations (35) splits up at high 
temperatures (kT » kow) and for a symmetric position 
of the terms (ko = 0). In those cases it is convenient to 
introduce the quantities 

Ln = Pn + Pm, Lln = Pn- Pm• 

Then 

iJ:tn = - (W n, n+le + W n, n-t)Ln + (W n, n+t8Ln+l + Wn, n-tLn-1), 

~~n=- (Wn, ".:+:'8 + Wn, n-t) Lln +(Wn, n+t8 Lln+l (4l) 
+ W n, n-tiln-t)- 2WnnLln; 

here 

Dn± = Um±, Znn = 2(nJxJn) (k = 0). 

The first of Eqs. (41) has for small values of 6 which 
are the ones most often encountered experimentally a 
well-known solution in the form of Gottlieb polynom
ials[9l which makes it possible to study the second equa
tion by the method of degenerate perturbationsY01 How
ever, the situation studied is by virtue of the first of 
Eqs. (37) essentially different from [lOJ because we must 
include perturbations of sufficiently high rank. If the 
rank of the perturbation ~n (the number of levels which 
basically take part in the transition from one state to 
another) is not too large 

(iln) 2 /no~ 1 

(no is the lowest of the levels important for the transi
tion) the smallest of the roots of the characteristic sys-

tern corresponding to (41) has the form 

Wnn(i-e-~nwjkT) -ni'ilhT 
Au=-----· -_-1 --------;-~- ------- e o I . 

1 + Lln(1- e ) If nn/W,,, n,+t 
(42) 

Since (39) does not impose a limit on the ratio 
Wnn/Wn n., the process can proceed with an apprecia
ble breakdown of equilibrium in the region which is im
portant for the transition and its speed can exceed the 
speed of predissociation evaluated by means of the usual 
Landau- Zener formula: .\a ~ wo. In particular, for the 
combination w ~ 1014 sec-', 6 ~ 10-6 , Wnn ~ 10 10 sec-1 

mentioned at the beginning of this paper inequalities (39) 
are satisfied and the multiplying factor in front of the 
exponential in (42) turns out to be of the order of 
10 10 sec-1 under equilibrium conditions. 

The transition rate is obtained as estimated earlier 
by the simple Landau- Zener formula also in the range 
of parameters 

w-y"b~Wnn~W, 6~1, 

w/6~W,,~w, 6~1. 

This was already discussed in[ 111 • When w ~ 1013 sec-', 
6 ~ 10-6 , Wnn ~ 1011 sec-1 the first of these inequalities 
are satisfied and the transition takes place after a time 
10-9 sec. 

In conclusion we note that the method given here to 
derive kinetic equations for electron-vibrational relaxa
tion processes can be generalized to include in the dis
cussion a non-resonance position of terms, a level 
splitting which is large compared with w, and tunneling 
effects. The latter requires, however, knowledge of the 
S-matrix in the region below the quasi-intersection 
point. 
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