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A systematic error occurring in the calculation of the viscosity of a low-concentration suspension is 
indicated. It is shown that the correct expression for the effective viscosity of a suspension of small 
spheres is given by (15), where rp is the small volume concentration of the solid phase. 

IN 1906-1911, Finstein£1l (see also (al, Sec. 22), in 
studying the flow of a suspension of spheres with small 
volume concentration rp, found an expression for the 
effective viscosity of the system: 

1] = 1]o(1 + 2,5rp), (1) 

where 1]o-viscosity of the liquid in which the spheres 
are suspended. Subsequently the theory was extended 
to include suspensions of ellipsoidal particles£3 ' 41 • In 
the present note we indicate, using a suspension of 
spheres as an example, that the calculations contain a 
systematic error. The question of the correctness of 
the obtained results deserves a special discussion, in 
view of the fact that the results of the theory are 
widely used to determine the dimensions and shapes of 
particles suspended in a viscous liquid£ 51• 

Assume, just as in[l,al, that the flow of the incom
pressible liquid undisturbed by the spheres is described 
by a velocity distribution v~0> = llikXk, where 11ik is a 
constant symmetrical tensor of the velocity gradients. 
The perturbation due to the sphere was calculated in 
the Stokes approximation by Einstein(l,aJ under the 
condition that at large distances from the particle the 
velocity field approaches asymptotically the unper
turbed value. The stresses that cause the asymptot
ically uniform motion of the liquid, both without the 
particle and with it, are then different. This is what is 
meant by the change of the effective viscosity of the 
system when the spheres are introduced. Thus, the 
problem reduces to a calculation of the stresses that 
maintain an asymptotically specified motion of the 
liquid with the particle. The viscosity of the system 
must then be defined as the ratio of the calculated 
stresses to the asymptotically specified velocity 
gradients. 

The expressions for the corrections to the velocity 
and the pressure, in a coordinate system with origin 
at the center of the sphere, have for the region 
r > R the form(l,a] 

5 ( R5 R3 \ R5 

v/ = 2 -;:4- ----;.2 j vhlninknz-~ \'ihn~t, (2) 
R' 

p' = -5llo ~ v ihninh, (3) 

where R-radius of the sphere, ni -unit vector in the di
rection of the radius vector ri, and rk = Xk = Xak• where 
Xak is the coordinate of the center of the sphere num
bered a. For the region r < R, the velocity is vi = 0. 
From (2) we get the true gradients of the velocity. For 
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the region outside the sphere we have 

av/ 5 ( R3 R') 5 (R' R3 ) 
axk = 2 , 5--;:a-7-;:;- v;znkn;n;nz+2" ~--;:a 

R' R' 
y... (v;z6;kn;nz + Vhzn;nz + V;kn;n;) + 5--;:r.v;;nhn; -~ v,.. (4) 

for the region inside the sphere Bvi/ BXk = 0. 
Let us find the average values. Taking into account 

the smallness of the concentration, we write an expres
sion for the velocity 

V; = \';hxk + ~ v/(xk- Xah), 

" 
which is valid everywhere except the regions inside the 
spheres, where 

(6) 

In calculating the average, we can, bearing in mind the 
large distance between the spheres, average first over 
the angles around each sphere, after which the last 
term in (5) vanishes. Taking into account the smallness 
of the spheres, we get from (5) and (6) 

From this we get the tensor of the observed velocity 
gradients 

which differs from the average value of the tensor of 
the true gradients, defined in analogous fashion with 
the aid of expression (4): 

av; 
-=(1-q>)Vik· 
axh 

Following(aJ, we define the stress tensor in terms 
of the average value of the momentum-flux tensor, 
which coincides in the approximation linear in the 
velocity with the stress tensor 

- 1 I 

(7) 

(8) 

(9) 

,a;k = V J a;k dV. (10) 

We break up the integration region into two regions 
(liquid and particle), and for the liquid we have 

(11) 

The integration of the volume of the particle is replaced 
by integration over the surface: 
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\ a;"dV=_!_ ~ (P;r"+P"r;)df. (1 2) 
~ 2 

The force actmg on the surface of the particle is cal
culated from the formula 

P; = -pn; + 'lo( Dv; + O~J_R__) nh. 
iJr f}r '~R ( 13) 

From the last relations, using (3) and ( 4), we get the 
stress tensor of the system 

(14) 

Since vik is the tensor of the asymptotically observed 
velocity gradients, we get from (14) the following ex
prl~ssion for the effective viscosity of the suspension: 

'1 = 1Jo(1 + 1.5qJ). (15) 

If the viscosity is determined from the ratio of the true 
gradients of the velocity (9) to the average value, as 
was done by Einstein[lJ, we get expression (1). How
ever, since the observed velocity gradient is llik, it 
must be recognized that formula (15) is valid. The 
foregoing calculation of the stress tensor is perfectly 
equivalent to the calculation of Landau and Lifshitzl21, 

but they, while assuming llik as the observed gradient, 
did not obtain the expression (16) only because they 
assumed without justification, at the end of their cal
culations, that avi/ axk = llik• in lieu of the correct 
expression (9). 

The results of the theory of the viscosity of a sus
pension of ellipsoidal particlesl3 • 4 l are likewise not 
accurate: the initial effective relative viscosity of the 
system is overestimated by a factor cp. However, un
like Einstein, Jeffrey[3 J and Kuhn( 4 J assumed the un
perturbed velocity gradient as the observed one. In 
this case the discrepancy is due to the careless regu
larization of the divergent expressions for the energy 
dissipation. 

In conclusion, I am grateful to L. P. Gor'kov for a 
discussion of the presented questions. 
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