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Approximate solutions of Maxwell's equations are obtained for the electric and magnetic field com­
ponents of a polarized monochromatic light beam in free space. Its geometric and physical proper­
ties are discussed. It is found that the flux lines of the beam energy possess space curvature and 
torsion. It is demonstrated that the appearance of longitudinal field components leads to the possi­
bility of ascribing a rest mass to each finite section of the beam. It is found that the narrower the 
energy channel of the beam the greater is the role which partial plane waves moving at a large angle 
to its axis play in formation of the beam. 

INTRODUCTION 

WHEN considering phenomena connected with the 
propagation of narrow quasimonochromatic light beams, 
it is customary to use the results of the theory devel­
oped for plane waves. A number of recent papers[ 1 - 4 J 

consider beams with a finite aperture. In [ 5• SJ are giv­
en solutions of the scalar wave equation in the diffusion 
approximation, containing information on the spatial 
distribution of only the amplitude and phase of the beam 
between the mirrors of the resonator. Solutions of this 
type describe well certain energy features of light 
beams, and also make it possible to develop a theory of 
their reflection and transmission through passive opti­
cal systems.[ 6 • 7 J However, the scalar solution does 
not contain the entire information concerning the mac­
ro- and microstructure of the beam, concerning its 
ponderomotive action. It is therefore of interest to ob­
tain a vector solution of the problem. 

A common property of all real beams of electromag­
netic waves is the dependence of the field amplitude and 
of the shape of the phase front on the coordinates, and 
also the nonvanishing of the transverse components of 
the wave vector. This always leads to the appearance 
of longitudinal components of the electromagnetic field, 
in contrast to the case of arbitrary superposition of 
plane waves propagating in ·one direction and forming an 
ideal light beam. For the considered non-ideal beam, 
the square of the length of the fourth-momentum does 
not vanish, making it possible to ascribe a rest mass to 
it, as is customary in the theory of hollow waveguides 
and resonators. 

In free space, each mode of sv.ch a beam represents 
an autonomous formation propagating as a unit. A nar­
row light beam passing through a layer of matter or be­
ing refracted or reflected also behaves like a forma­
tion which on the whole does not obey the laws of geo­
metrical optics. 

ELECTROMAGNETIC FIELD OF LIGHT BEAM 

The vector functions E and H, describing the elec­
tromagnetic field of a narrow monochromatic light 
beam propagating in the direction of the z axis in free 
space, will be sought in the form 
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E(x, y, z, t) = Eo(x, y, z) exp (i(koZ- wt) ], 
H(x, y, z, t) = H0 (x, y, z) exp [i(k0z- wt)]. (1) 

We assume that the beam is circularly polarized in the 
plane v = conse> 

Ev = jE., j2 = -1, j = ±i, (2) 

and that the transverse components of the electric and 
magnetic vector in this plane are perpendicular, i.e., 

Eox = Hny, Eoy = -Hnx. (3) 

Conditions (2) and (3) can be satisfied simultaneously 
by assuming that the amplitudes Eoz and H0z in the 
propagation direction change little over the extent of a 
wavelength 

XIB:Ho:I...:IHo:l, (4) 

where ~ = 1/ko = c/w. We then obtain from Maxwell's 
equations a system of equations for the amplitudes E0 

and H0: 

(ox2 + Oy2 + 2ikoiJz)Eo, = 0, 
Eny = jEox, 

E0z = iX(ox + jiJy)Eox, 
H= -jE, 

(5a) 
(5b) 
(5c) 
(5d) 

making it possible to determine uniquely all the compo­
nents of the field intensity vectors of the light beam 
propagating in the direction of the z axis. 

We note that when conditions (2)-(4) are satisfied 
we obtain directly for E0x not the complete amplitude 
equation, but the Schrodinger-type Eq. (5a). It takes 
into account diffraction phenomena, for example the ef­
feet of transverse "diffusion" of the ray amplitudes 
over the front of the wave as the wave propagates. By 
specifying the function E 0x(x, y, 0) in the plane z = 0 
we determine the behavior of EoX(x, y, z) (and of the 
remaining components of the electromagnetic field) in 
all of space. 

Sharply-directional radiation formed in lasers is 
characterized by a Gaussian distribution of the field in­
tensity over the beam cross section. A scalar function 
possessing this property and satisfying Eq. (5a), was 
obtained for the case of a confocal resonator in [&J. 

1>The upper and lower sign respectively denote throughout right­
hand and left-hand circular polarization. 
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Using the results obtained there, in accordance with (5), 
we get an expression for the components of the electric 
and magnetic fields of a circularly polarized light beam: 

"" 00 

Ex=~ E,.m"= L; amn'I'm(-=-)wn(~)ei"'mn; E~=iEx. 
111,1!==0 111,11=0 '0'· '0' 

(A ,,- ( X ) ( y \ _ X - ( x \ ( y )} . +-l21n'¥m-t ~ lfn .-)+-i2n'¥111 -;'P'n-1- e 1 ~11ln; 
a ·a· a. a a. a 

H = -jE. (6) 

Here 

!l>mn = -wt + koZ + r'I2XR- (m + n + 1) arctg(Xz / a02), 

a= ±arctg(ylx) +arctg(a02 1Xz), 

amn-constant dimensional coefficient which determines 
the contribution of different modes to the field of the 
beam, 

a(z) = a0{1+ (Xzla02)2}''• (7) 

-running effective radius of the light beam, R(z) 
= a~a2 /X.2z -radius of curvature of the phase front near 
the z axis, r = (x2 + y2) 1 / 2 and '11m-normalized Her­
mite functions. The vector potential of the beam field 
is A=± 1\:H. 

The aggregate of all the possible spatial modes 
(Emn, Hmn) (6) forms a non-ideal monochromatic light 
beam. Each mode represents an independent solution of 
the system (5). An elliptically (or linearly) polarized 
beam can be obtained by superposition of circularly po­
larized beams of opposite polarization. 

The dependence of the phases of the longitudinal com­
ponents E~n and H~n on the coordinates does not co­
incide with the dependence for the transverse compo­
nents. This circumstance distinguishes significantly 
the solutions (6) from the corresponding solutions of 
the quasi-optical approximation, where the phase func­
tions of all the field components are assumed to be 
equally dependent on the coordinates. The latter causes 
the vectors E and H to lie in a plane that is tangent to 
the equal-phase surface, something that does not occur 
in our case. In this sense, the electromagnetic field de­
scribed by (6) is not transverse. The obtained expres­
sions (6) approximate well the field of a light beam in 
all of space under the condition a0 > 11:. 

The real components of the electric and magnetic 
fields of the fundamental (0, 0) mode of a circularly 
polarized beam are given by 
Ex= A (r, z) cos !1>, 
f:y = +A (r, z) sin !1>, 
E, =A (r, z)B (r, z) cos (!I>+ a), 

where 

Hx = ±A (r, z) sin !1>, 
Hy =A (r, z) c:>s !1>, (8) 
H,= ±A (r, z)B (r, z) sin (!I>+ a), 

A (r, z) = a0o'l'o ( _:_ J'l'o ( ~ l; =Eo(~) exp( ~~); 
\a. . a a · 2o 

B(r, z) = -Xr I aoa; 

and Eo= aoovf1Ta~-amplitude of IE 0 x(O, O, 0)1 in the 
narrowest part of the beam. 

To estimate the approximations made in the deter­
mination of the beam field components (6), we shall use 
the complete amplitude equation for E0x 

Since the coordinate z enters in the expression for E0x 
only in the combination 11:'z/a~ = ~. it follows that 

iJ,2Eox = (X I ao2 ) 2iJ?'Eox (r, I;;), 

where a~E 0 x(r, ~) is a slowly varying function of ~. 
Therefore the order of the correction oEox to the ob­
tained solution Eox does not exceed, at the most, 
(1C/a~)2• In particular, it can be shown that for the fun­
damental mode 

iXz ( X )2 [ Xz J { r2 [ Xz J oEox=-2 - exp -2iarctg-2 1--exp -iarctg-
a · ao ao a2 . ao2 

+-8~ exp [-2iarctg~]}EOx. 
a• ao2 

The correction to E 0z, as can be readily verified from 
(5c), is proportional, at most, to ( 11:'/a~)3 • 

The components (8) constitute an exact solution of 
the approximate system (5). Since we are interested in 
solutions in the form of a circularly polarized wave, the 
corrections to the expressions in (8) enter in the form: 
A- A+ t::..A, B- B + t::..B 41- 41 + 1:::..41 where t::..A and 
1:::..41 are of the order of 7f_l, and t::..B ~ 7r.:!. Henceforth, in 
calculating quantities that are quadratic in the field, we 
shall retain terms of order ~. 

GEOMETRICAL PROPERTIES OF LIGHT BEAM 

For the field of the fundamental mode (0, 0) of the 
beam, the components of the Poynting vector 

c 
Sx (r, z) = - 4n A 2 (r, z)B (r, z) cos a 

S,(r,z)= +-c-A2(r,z)B(r,z)sina, 
4n 

c c 
S,(r,z)= -(A(r,z)+ !1A)2 ~ -A2(r,z\ 

4n 4n 

(9) 

have non-zero transverse components, due to .the pre­
sence of longitudinal components of the electric and 
magnetic fields. The energy streamlines of such a 
beam (see the figure) 

r = ro{1 + (Xz I a02) 2}'i•, 
q> = <0 ± arc tg(Xz / a02) 

(lOa) 
(lOb) 

constitute a family of curves lying on the surfaces of 
single-cavity hyperbolids of revolution2> coaxial with 
the direction of beam propagation. These lines have a 
curvature K = -7r.2ro/aoa3 and a nonzero torsion T = ±1c/a2• 

The phase difference between the transverse compo­
nents of the field remained constant in this case, thus 
evidencing that in the case of circular polarization 
there is no phase shift during the propagation. In the 
case of linear polarization, this corresponds to conser­
vation of the orientation of the plane of polarization in 
space. 

The expression for the time-averaged energy den­
sity of the beam in the approximation under considera­
tion3> 

2>The aperture angle {}of the asymptotic cones of these cylinders 
are determined by the relation tan ({J/2) = '!l.r0 /o0 . 

3>The correction Min the first term can be neglected compared 
with A, since this ·affects the magnitude of the term insignificantly. 
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Schematic representation of a non-ideal coherent light beam (funda­
mental mode). a(z)-running radius of the beam, defined by (7); S­
Poynting vector (9); {}0 -beam aperture angle, {} and r(z)-asymptotic 
angle and radius of the cross section of the single-cavity hyperboloid 
of revolution (I Oa). 

plane waves) yields 
oo2 

E(k)=Eo Z:t G(k)l\(ko-kz-k;/2k0)exp(-o0Zk;/2), (14) 

where 

k,. = 1/1.-,2 + k/, Qlk = arctg (ky/ kx), 
G(k) = {1,j, -(k,f ko) exp (jq>k)}. 

As expected, the principal role in the formation of 
broad beams is played by plane waves with vectors k 
contained in a small narrow angle near the propagation 
direction. When a0 - co, we obtain a plane wave with 
k = ko· The narrower the energy channel of the beam, 
the more significant the contribution of the plane waves 
propagating at large angles to the z axis. When a0 - 0, 
the beam degenerates into a standing wave. 

(A+ ~A)2 A2B2 
W(r,z)= +--

4n S:n: 
(11) PHYSICAL PROPERTIES OF LIGHT BEAMS 

differs from the case of a plane wave having the corre­
sponding amplitudes in the second term in the right side 
of the equation. The energy flux through the walls of a 
current tube (10) vanishes, and the energy propagates 
only along these tubes, with div S = 0. The rate of en­
ergy propagation v = S/W along the current tubes (10) 
is smaller than the propagation velocity c of a plane 
electromagnetic wave. In a sufficient vicinity to the z 
axis of the beam, the beam properties approach the 
properties of a plane wave. In this region, v = c and 
the well known relation S = cW is satisfied. 

It is interesting to note that the variables x, y, and 
z enter in the expressions (6) for the field components 
in the form of the dimensionless combinations ~ = x/a0 , 

TJ = y/a0 , and l; = z/l0 , where l0 = aV7c, and therefore 
the parameters l0 and a0 are the natural longitudinal 
and transverse scales of the beam. 

Let us subdivide the entire region of propagation of 
the light beam into a near Fresnel zone with z .$ l0 , and 
a far Fraunhofer zone, where z » l0• In the far zone, 
the energy streamlines can be regarded as straight and 
merging from the origin. In the near zone, these lines 
experience an invisible torsion. 

The equal-phase surfaces 

z /'A+ fl./ 2XR- arc tg('Az / a 02 ) = const 

are surfaces of revolution, and their form changes 
from a plane as z- 0 to an ellipsoid of revolution 
(z- z0 ) 2 + r 2/2 = z~ when z- co. Here z0 is a con­
stant. The maximum deflection of the phase surface 
from a plane will occur at z = Z0 • Then R = Z0 , and 

(12) 

Eq. (12) goes over (near the z axis) into the equation of 
a sphere, r 2 + (z + Z0 ) 2 = R2• The latter denotes that the 
field components of the beam in question approximates 
radiation from a resonator with confocal mirrors. 

The wave vector k, determined from the relation 
k = v<I>, 

k• = 0, kr = r / 'AR, kz ~ 1/ X, (13) 

has a nonzero transverse component kr, which deter­
mines the bending of the phase surface upon propagation 
of the beam. The phase trajectories of a narrow coher­
ent beam have a curvature K = Xr2/a0 a3 and constitutes 
the generatrices of hyperbolic cylinders (lOa). 

Expansion of the field (8) in a Fourier integral (in 

The energy U of a segment of a beam with thickness 
~z, contained between two planes perpendicular to the 
z axis, 

(15) 

and the total energy flux 
+oo +oo 

IIz=II= ~ ~ Szdxdy=-'/-Eo2 :n:ao2 (16) 
'!:rt 

-oo -oo 

are constant quantities and are determined by its ef­
fective cross section 1Ta~. A monochromatic pulse of 
finite length ~z will broaden upon propagation only in 
the transverse direction. Some 86% of the entire beam 
energy passes through the cross section a, and approx­
imately 99.97% passes through the section 2a. 

The momentum density S/c2 , as seen from (9), is 
conserved along the energy streamlines. The momen­
tum of the segment of the beam is 

Px = P• = 0, (17) 

The square of the four -momentum of the light beam 
differs from zero 

[f2- (-2pz = mozc• ·¥= 0, (18) 

making it possible to ascribe to the beam segments a 
rest mass equal to 

The fact that the rest mass of a light beam differs 
from zerol 9 J is of fundamental importance and is due, 
in final analysis, to the presence of the longitudinal 
field compounds. Each segment of such a beam can be 
regarded as a wave packet propagating along the z axis 
with velocity 

c2P, c c 
Vz = v = ----u- = 1 + Uu/U J... ~ 1-+ "'J..2/2cr02' 

which is lower than the velocity of light, and with self­
mass determined by formula (18). Relation (18) has in 
our case a simple geometrical interpretation. The angle 
between the sides U and cP of the triangle is equal to 
half the beam-aperture angle J.. 
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The components of the time-averaged angular-mo­
mentum density are given by 

A2(r z) A2 (r, z) 
M'x = --'-[y ±zB(r,z)sina], Mli = ----[x+zB(r,z)cosn]. 

4nc 4rrc 
_ rao A2(r, z) 

llf,= +----B(r,z), 
a 4rrc 

(20) 

and therefore the components of the total momentum of 
the beam segments are . . , 

Eo2 

Mx =My= 0, M, =±X 4rrc ncro2 ~z. (21) 

The intrinsic (spin) angular momentum of the fundamen­
tal mode of the beam 

M, = _i_ \ [EA] dr 
4nc · 

coincides with the total angular momentum (21), and its 
orbital angular momentum is equal to zero. 

For a circularly polarized light beam, the following 
well known relations are satisfied 

U_j_/M, = ±w, U_1_= cP, (22) 

thus evidencing that the approximations employed here 
are correct and noncontradictory. 

In conclusion we note that the expressions for the 
energy density, total energy, energy flux, momentum, 

and rest mass of a linearly polarized beam coincide 
with the corresponding formulas (11), (15), (16), (17), 
and (19). The angular momentum and the intrinsic 
(spin) momentum of such a beam vanish, and its energy 
streamlines have no torsion. 
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