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We investigate the influence of collisions on the structure of the Q branch of random scattering in 
gases. We show that according to the experimental data the total width of the Q branch remains con­
stant in a wide range of pressures. 

INTRODUCTION 

FOR stimulated random scattering (SRS) on vibra­
tional transitions of diatomic molecules such as 0 2, 
N2, and particularly for the magnitude and the pres­
sure dependence of the gain, principal interest attaches 
to the Q-branch structure made up of the transitions 
l:i v = 1, t:.J = 0 ( v and J are the vibrational and rota­
tional quantum numbers). At low pressure, the distri­
bution of the intensity in the Q branch is determined 
by the splitting of the frequencies of the J - J' transi­
tion as a result of interaction of the vibration and ro­
tation. The frequencies of the Q-branch components 
are described by the formula (see[1 ' 2 l) 

w(J) = ·wo- 2ncael(J + 1), (1) 

where ae is the interaction constant. This constant is 
small ( ae = 0.0171 cm-1 for N2 and ae = 0.016 cm-1 

for S2 ), so that even at relatively low pressures, on 
the order of several atmospheres, the Q-branch com­
ponents overlap completely. One might expect a fur­
ther increase of the pressure to lead to an increase in 
the width of the Q branch. The experimental data, 
however, yield an entirely different result. For exam­
ple, in the case of 0 2 and N2 the widths l:iwQ 
(::::J3 cm-1 at T:;::, 300°K) remain constant in the pres­
sure region 15-125 atm[2'3 l. In the same pressure 
interval, the widths of the individual components of 
the purely rotational band of the Raman scattering 
t:.v = 0, t:.J = ± 2 increase in proportion to the concen­
tration, and at p :;::, 100 atm they exceed the total width 
of the entire Q branch by almost two times. These 
experimental results have not been explained in the 
theory to this day (a qualitative discussion is contained 
in [ 4,s J. 

At the same time, in recent years, in connection with 
the great interest in SRS in gases and in connection 
with a number of applied problems, this problem has 
acquired considerable significance. It suffices to in­
dicate that the SRS gain in gases of the type under 
consideration is k w N/ l:iwQ, where N is the molecule 
concentration. 

In this paper we construct a theory of the broad­
ening of the Q branch of Raman scattering in gases. 
It is shown that with increasing pressure the growth 
of the width of the Q branch is stopped as a result of 
specific interference effects. Moreover, under certain 
conditions and in a certain pressure interval, we can 
expect a decrease in the value of l:iwQ, and conse-
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quently a nonmonotonic dependence of the gain k on 
the pressure. 

GENERAL THEORY OF IMPACT BROADENING 

We first formulate the theory of impact broadening 
in a form most convenient for the description of the 
interference effects of interest to us. We start from 
the following formulas for the calculation of the spec­
trum of the radiative transition of an arbitrary quan­
tum system, an atom or a molecule, experiencing col­
lisions with the surrounding particles: 

1 00 

/(w) =-Re \ e-iwr<D(T),h, 
n . 

0 

<ll(-r) = ~ Wap~~~~(T)/"·~·ha. 
aP,a'f\' 

The correlation function <I>( T) is written here in 

(2) 

(3) 

the form of a sum over all possible states of the sys­
tem, Wa w exp[ -Ea/kT] is the population of the 
state a, fa{3 are the unperturbed matrix elements of 
the considered radiative transition, and p~af3J, ( T) is 

the element of the system density matrix. The super­
scripts ( a{3) denote that these matrix elements satisfy 
the initial conditions 

Using (2) and (3), we have 

( 1 "' (Gt~) I w) = -Re ..:::J Wapa·~·(w)fw~·ha, 
n "~~·w 

~ 

p(w) = ~ ·e-i"''p(-r)dT. 

Assuming that the perturbation experienced by the 
system reduces to binary collisions, and assuming 
these collisions to be instantaneous, we write for 
p ( T) the following equation: 

~- = _i_[Horl+( ap) 
dt ft at coil 

(4) 

(5) 

(6) 

(7) 

Here Ho is the Hamiltonian of the unperturbed system, 
and [Hop]= (Hop- pHo). 

We denote the set of parameters characterizing the 
collision by g. Let the number of collisions per second 
with parameters in the interval g, g + dg be equal to 
P( g) dg, and let the increment of the density matrix 
p as a result of one collision be l:ip (g). Then 
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(dp) =~ P(g)t';p(g)dg== ~P(g)[S+pS-pJdg, (8) 
\ dt coli 

where S = S (g) is the exact S- matrix of the collision. 
Substituting (8) in (7), taking the Fourier transform 

(6), and taking the initial conditions (4) into account, 
we obtain a system of equations for the determination 

of p~~~}(w ): 

(9) 
et"(3" 

Ga'~',a"~" = i( w - wa·~~)6a·a"6~·~" + \ (i\a,~'·llwr'"- st.a,Svw)P(g)dg. 
• (10) 

Using the linearity of the system (9), we can carry 
out the summation over a and {3 in (5) in general 
form. We introduce the notation 

(11) 

Multiplying (9) by Waf[3a and summing over a and 
{3, we obtain a system of equations for the quantities 
Fa' [3', which differs from (9) only in the form of the 
right-hand side: 

Now 

~ Ga,~·, a"~"F ""~" = W a'f' a'B'• 
a/'13" 

(12) 

1 . 
/(w) =-Re~ !a'B·Fa'B'· (13) 

1t a'W 

The system (12) is a system of linear algebraic equa­
tions, the solution of which in each concrete case en­
tails no fundamental difficulties. 

Formally, the summation in (12) and (13) extends 
over all the states of the system. In practice, however, 
it is necessary to take into account only those transi­
tions which make an appreciable contribution to the 
considered region of the spectrum, i.e., transitions 
with wa'[3'"' w and wa"[3""' w. 

We emphasize specially that our formulation of the 
problem of calculating I( w ) does not differ at all in 
principle from the general theory of broadening of 
overlapping spectral lines, developed inr6 • 7l. Its con­
venience lies in the fact that it is possible to investi­
gate with the aid of (12) and (13) the character of the 
spectrum I( w ) as a function of the form of the exact 
S-matrix of the collisions. 

Q-BRANCHSTRUCTURE 

As already mentioned, the Q branch of the vibra­
tional band of Raman scattering of diatomic molecules 
is the result of t.J = 0 transitions between the vibra­
tional-rotational levels of the molecule. The corre­
sponding levels and transitions are shown in Fig. la. 
Since under ·.ordinary experimental conditions kT 
<< nn' where n is the collision frequency' we can 
confine ourselves to allowance for transitions with 
v = 0, J- v = 1, J. The frequencies of the Q-branch 
components are described by formula (1). 

Let us consider the influence of collisions on the 
vJ levels. It is well known that the effective cross 
sections of collisions accompanied by a change of the 
rotational state of the molecule vJ - vJ' are equal 
in order of magnitude to the gas-kinetic cross sections 
Ugk· On the other hand, the chan~~e of the vibrational 
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FIG. I. Vibrational-rotational level scheme of diatomic molecule. 
The solid arrows show the transitions due to collisions, and the dashed 
arrows the radiative transitions. 

state is characterized by much smaller cross sections, 
~(10-3 --10-4 )agk (see, for example,r 8 J). We shall 
therefore assume that the collisionS-matrix elements 
are diagonal in v. It can also be assumed that the 
matrix elements SvJ, vJ' are the same at v = 0 and 
v = 1. In any case, it is difficult to expect the cross 
sections of the J - J' transitions for the ground and 
first excited vibrational states to differ significantly. 
We therefore have 

(14) 

For the radiative transitions t.J = 0, in the ap­
proximation (14) for the S-matrix of the collisions, 
the problem of interest to us, that of calculating the 
spectrum, can be formulated as follows. There are 
two interacting subsystems, the molecule vibrations 
(I) and the molecule rotations (II); the subsystem II is 
perturbed by the collisions, but the collisions do not 
affect the subsystem I. It is required to ascertain how 
and under what conditions the relaxation transitions 
J- J' in the second subsystem (i.e., transitions due 
to collisions) can influence the spectrum of the radiative 
transition v - v' of the subsystem I. 

We consider first the simplest case, when the sub­
system II has only two levels, J and J'. The system, 
as a whole, obviously has four levels, namely vJ, vJ', 
v' J, and v" J', as shown in Fig. lb. The radiative 
transition v - v' corresponds to two transitions vJ 
- v' J and vJ' - v' J' in this figure. If the interaction 
between the subsystems I and II is small, then we can 
assume, with sufficiently good approximation, that it 
leads to a frequency difference t. = 21Tcae 
[ J( J + 1) - J' ( J' + 1 )] [ cm-1], but does not affect the 
magnitude of the corresponding matrix element in (11)­
(13). Obviously, the frequencies of all other possible 
transitions in Fig. lb lie in an entirely different region 
of the spectrum. They can therefore be disregarded. 

To simplify the notation, we designate the transi­
tion vJ - v' J by the index 1, the transition vJ' 
- v' J' by the index 2, WvJ by W1, and WvJ' by W2. 
We then get from (12) and (13) (in accordance with the 
statements made above, f 1 = f2 = f ) 

G11F1 + G,2F2 = Wd*, 

G2,F1 + G22F2 = W,f*. 

(15) 

(16) 

(17) 
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Using further (10) and (14) and taking into account 
the conditions of the unitarity of the S matrix, we ob­
tain 

where 

~~ = N(vcrJJ•) = ~ ISJJ•I 2P(g)dg, 

~ = N(vf1J'J) = ~ ISJ'Ji 2P(g)dg, 

(18) 

(19) 

N is the concentration of the perturbing particles, v 
is the relative velocity, a is the effective cross sec­
tion of the corresponding transition, and the angle 
brackets denote averaging over the velocities. Under 
stationary conditions the populations of the levels W 
and the probabilities of the transitions should be con­
nected by the relations WvJ < VUJJ') = WvJ' ( WJ' J). 
Therefore 

w,y1 = w.v •. (20) 

We introduce the notation 

Ol! =roo -li; W2 = Wo +II; 2/i = L\ (21) 

and reckon the frequency w from w 0 • It then follows 
from (15) that 

(22) 

Let us consider first the two limiting cases o /y 1,2 
» 1 and o/i'1,2 « 1. When o/y1,2 » 1, the distribu­
tion I( w ) has two maxima at the points w = ± o , and 
can be written in the form 

1 [ w,y, w.v. l (23) 
/(w) ~- ------+ lfl". 

n (w+ll) 2 +y,• (ro-li) 2 +Y•2 

In the second limiting case, o/y1,2 << 1, expression 
(22) has one sharp maximum at 

(23') 

In this region 

(25) 

Formulas (24) and (25) describe a dispersion contour 
of width r oo 1/N. 

Thus, at low pressures (o/y 1,2 » 1), both com­
ponents of the line broaden independently, and their 
widths y, and y are proportional to N. 

With further increase of pressure, when overlap of 
the components begins, the character of the broadening 
changes, and in the limiting case o/y 1,2 << 1 both 
components contract into one dispersion contour, the 
width of which decreases with increasing pressure in 
proportion to 1/N1>. 

Similar effects of the narrowing of the spectral 
lines were considered earlier in the theory of magnetic 

1 >we note that in the far wing w ~ 'Yt, 'Y2 , li we have l(wJ"' w-4, in 
accord with (22). 

resonance (see, for example,(9•101 ). The possible ap­
pearance of such effects in the optical region of the 
spectrum was first indicated by Burshtein and Naber­
ukhin [ul. They, however, confined themselves to the 
particular case of equally-populated states a. Their 
entire analysis is based on an equation of the type (7) 
for the time-dependent operator of the radiative transi­
tion f(t ). 

Such an approach is possible in the case of equal 
populations W a, but in the general case of different 
Wa it leads to incorrect results. 

Let us return to the structure of the Q branch. 
The problem of interest to us differs from the con­
sidered example only in the large number of the J­
sublevels, which must be taken into account in the 
calculation. We can therefore expect the following 
picture of broadening of the Q branch with increasing 
pressure. At small pressures, when the characteristic 
dimensionless parameter is 

S = 2nca.fmax!Y > 1, (26) 

where Jmax is the angular momentum corresponding 
to the maximally populated (at a given temperature) 
rotational sublevel and y is the relaxation width, each 
component of the Q branch broadens independently in 
proportion to N. When E ~ 1 and the Q-branch com­
ponents overlap, the interference effects, which we 
considered above with the two J-sublevels as an ex­
ample, may come into play. For the molecules N2 and 
02 at room temperature, J~ax RJ 50 andy= N(w) 
RJ N x 1010• Therefore E reaches values ~1 at 
N ~ 1021 cm-3 • 

The performed calculation confirms these qualita­
tive considerations. By way of an example, Fig. 2 
shows the results of a calculation of the structure of 
the Q branch of the molecule N2 at differentvalues of 
the density N. In this calculation we assumed that 
kT = 200 cm-1 and took into account 20 components of 
the Q branch. To simplify the picture, we took into 
account transitions due to the collisions only between 
neighboring sublevels (such a simplification does not 
change the qualitative picture). We assumed that the 
transition probability N( VUJ,J _ 1) is equal to 

N(VGJ, J-1> = 4,5 ·1Q-10 N. 

The probability of the inverse processes were deter­
mined from the detailed-balancing condition 

(2J' + 1) exp[ -BJ' (J' + 1) I kT] (vcrJ', J) = 

= (2/ + 1) exp [ -BJ (J + 1) I kT] (vcrJ, J•). 
(27) 

Such a choice of the transition probabilities ensures 
approximately the same broadening of all the rotational 

FIG. 2. Structure of A branch of N2 molecule, kT = 200crn-1 ; a) N 
- 0.7 X 10 20, b) N = 2.8 X 10 10, c) N = 4.5 X 10 21 , d) N = 7 X 10 22• 
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components, in agreement with the experimental re­
sults[21. It is seen from the figure that the total width 
of the Q branch remains constant in the pressure in­
terval 15-125 atm, in full agreement with the experi­
mental data [21. 

As to the possible observation of the effect of the 
narrowing of the Q branch at large values of the 
density N, it must be emphasized that this effect is 
connected with neglect of the dependence of the S 
matrix on the vibrational quantum number v. In a real 
case, such a dependence does exist, and we can expect 
the total width of the Q branch to remain constant in 
a certain interval of density values N, and then in­
crease with further increase of the density, but much 
more slowly than expected without allowance for the 
described interference effect. In addition, as seen 
from Fig. 2, in the case of N2 the Q branch begins to 
narrow down only at very large values of the density 
N. At such values of N, the employed calculation is 
not applicable. 

We note in conclusion that to determine the complete 
structure of the Q branch it would be necessary in 
principle to take into account the degeneracy in the 
magnetic quantum number M. In this general form, 
however, the problem is very complicated, owing to 
the large number of equations in the system (12). The 
degeneracy in M was therefore disregarded in our 
calculations. This simplification is equivalent to as­
suming that, after averaging over all possible orienta­
tions of the impact parameter b and the relative 

velocity v, the products of the elements of the S 
matrix, which enter in Eq. (12), do not depend on the 
magnetic quantum numbers. 
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