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According to the Bardeen-Cooper-Schriffer (BCS) theorr the temperature for the transition to the super­
conducting state depends on density according to Tc - n 13• In the present paper we investigate on the 
basis of this dependence the hypothesis that stars of the white dwarf type which are characterized by 
T - 106 oK and n - 1030 cm-3 can under certain conditions go over into the superconducting state, and 
that such a transition, which as a result of the Meissner effect is accompanied by the expulsion of the 
magnetic field and the stripping of the outer sheath, may have the nature of an explosion. The ion­
acoustic oscillations of a strongly degenerate plasma play in this case the same role as is played by 
phonons in the ordinary BCS theory. 

1. White dwarfs do not occur in Babcock's catalog[1l 
(1958) containing stars possessing appreciable mag­
netic fields {the presence of a field is determined by 
means of the Zeeman effect). Although this circum­
stance cannot be regarded as proof of the absence of 
a magnetic field in the case of stars belonging to this 
class (additional investigations are needed), neverthe­
less an analysis of this problem is of definite interest. 
Indeed, for the range of densities (n - 1025-1035 cm-3) 

typical for white dwarfs at first glance one might ex­
pect high values of electrical conductivity, and, con­
sequently, a very efficient generation of magnetic 
fields arising as a result of turbulent pulsations of 
a medium which is a good conductor. Therefore one 
might expect that white dwarfs possess superstrong 
magnetic fields. 

Under these conditions the absence of a field should 
be almost unambiguously interpreted as an indication 
that white dwarfs are superconductors. We note that 
as a result of the Meissner effect a simply-connected 
superconductor cannot possess a magnetic field of its 
own. 

2. Thus, for white dwarfs the following alternative 
possibilities exist: either they possess superstrong 
fields, or there should be no field at all. The possi­
bility of realizing the superconducting state in the case 
of white dwarfs follows from the fact that the critical 
temperature Tc of the transition into the superconduct­
ing state depends on the electron density ne in accord­
ance with the expression 

(1) 

and if for a metal under ordinary conditions we have in 
order of magnitude ne ~ 1023 and Tc - lOoK then, on in­
creasing the density by a factor of a million (ne - 1029), 

we obtain Tc - 105 oK. We note that white dwarfs are 
cold dying stars and temperatures of the order of a 
million degrees are a reasonable estimate for them. 

Relation (1) can be derived in the following manner. 
According to modern ideas white dwarfs are stars in 
which the force of gravitational compression is in equi­
librium with the pressure of a degenerate electron gas. 
At T = 0 the limiting Fermi momentum is equal to 

p.- = (3n21i3ne) 'I•. (2) 

In particular, PF = me at ne ~ 0.6 X 1030, so that ne 

« 1030 corresponds to the nonrelativistic case (vF « c), 
while for ne '2: 1030 relativistic considerations must be 
taken into account. 

We first consider the nonrelativistic case when 

v., PF!mc 
~F=·--=----~1. (3) 

c f"i + (pF/mc)Z 

In the modern theory of superconductivity it is assumed 
that exchange of virtual phonons between two electrons 
leads to the formation of bound electron pairs and in the 
spectrum of elementary excitations an energy gap ap­
pears the width of which corresponds to the binding en­
ergy of a pair of electrons. For the critical transition 
temperature in this case one obtains the formula 

Tc = rtTn, 

where TD is the so-called Debye temperature corre­
sponding to the maximum phonon energy: 

liwmax 1i 
Tn=--=-Cs kmax• 

X X 

(4) 

(5) 

Here K is the Boltzmann constant, cs is the speed of 
sound, while kmax = 27T /.:\min is the maximum phonon 
propagation vector. In a one dimensional chain of atoms 
the minimum wavelength is evidently equal to .:\min= 2a 
and then kmax = 1T /a where a is the distance between 
neighboring atoms (in this case neighboring particles 
will have opposite phase). In Debye's theory of spe­
cific heats a somewhat different definition occurs: 

:rt ( 6 )''• kmax = (6n2n) 1/ 3 =- - , 
a n. 

(6) 

where a = n -113 • The speed of sound (the phase velocity 
of phonons) can be determined from the usual formula 
cs = (apjap) 1f2. If the gas temperature Tis much lower 
than the Fermi temperature (the temperature for de­
generacy) 

(7) 

then in the first approximation (in the limit T- 0) the 
electron gas pressure is determined by the adiabatic: 

Considering the ions to be singly charged and taking into 
account the condition of quasineutrality (ni = ne), we 
obtain 
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1/ ap 1/ ap. 1!8--p:- ym (9) 
c,= Yap~Vap;=VM;&n.=Vp 3M' 

In obtaining this in virtue of p ~ m -l we have neglected 
the ion pressure. Then from (6) and (9) we have for the 
Debye temperature 

n 2''·ym Tn = -c, kmax =----=. -Tp. 
X l'3 M 

(10) 

If, in particular, we assume that a white dwarf consists 
primarily of hydrogen (M/m = 1830) then Tn R~ TF/30. 
It should be noted that under ordinary conditions rela­
tion (9) is satisfied by metals only in order of magnitude 
up to an accuracy of a factor of order 2-3. This occurs 
as a result of the fact that usually the Fermi energy 
( £F ~ 5 e V) is comparable with the ionization energy I, 
i.e., with the binding energy of electrons in atoms. One 
might expect that at high densities when £F » I rela­
tion (9) will be satisfied with a high degree of accuracy. 
Then, as can be easily shown, the coefficient of propor­
tionality 71 in formula (4) will not depend on the density 
and, consequently, all three characteristic temperatures 
TF, Tn and Tc turn out to be proportional to n~3, and 
this completes the proof of formula (1). 

Numerically the coefficient 11 in accordance with the 
theory of superconductivity[21 is equal to (ln y = C 
= 0.577) 

'1]=1,14exp(-1/Vint.PF) (1,14=2v/n), (11) 

where 

4np2V dp 
PF = 2---- = mVpp/n21i3 

(2nli) 3 de 

is· the energy density of electron states near the Fermi 
surface, while Vint is the matrix element for the inter­
action between electrons in Bardeen's model Hamilto­
nian: 

H = ~Spllp+ap- fint ~ a~p·a-pap•+ap. (12) 
p p,p' 

~P = VF(p - PF) is the electron energy expressed with 
respect to the Fermi surface. 

We recall the method of calculating the quantity Vint· 
Since we always have Tn << TF, then the phonon oscilla­
tions affect only a small surface layer of electrons of 
width fiwn near the Fermi surface. If a density fluctua­
tion occurs (n- n +lin), then the energy of such a sur­
face electron will be altered by the amount 

fieF 2 lln 
B,-(n + lln) = e,·(n) + Tn lln = Ep(n) + 3 ep(n)--;;;-. (13) 

Since lin/n = - div ~.where E is the displacement of the 
lattice, then summing the above increment over all the 
electrons and going over to second quantization we ob­
tain the Hamiltonian for the interaction between electrons 
and phonons 

H' = L;lle = -2eF \ drn.(r)div'§(r)== -i L;Dqa;+qap(bq- b_q+), 3 . 
p, q 

(14) 

Finally, eliminating first order terms with respect to 
Dq by means of a canonical transformation we obtain the 
Hamiltonian for the interaction in the form (12 ), and, 

moreover, we have 

Wmt=_Dq2 =-~=.!!!__ 
liroq 9V p;c,intz 3N . 

(15) 

Then the parameter V inWF appearing in (11) turns out 
to be simply equal to the number VintPF = 'la and we 
obtain 

( 1 ) 1.14 1 '1]=1.14exp --- =-2-=-. 
~intPF e 6,5 

(16) 

In Table I we give values of the three temperatures 
TF = EF/K, Tn = T F/30 and Tc = Tn/6.5 calculated by 
means of nonrelativistic formulas for a hydrogen plas-
rna. 

Table I 

10•• 1,5 18.108 600 92 
1088 7,2 83·10• 2.8-103 43U 
10 .. 33,3 386-108 13·10' 2·108 

10" 150 1.8·10' 60·103 9.2·108 

10" 720 8.3·108 280-10• 43·10• 
10" 3.3-10• 38~6·10' 1,3·108 200·103 

10" 15,5·108 180·10' 6·10' 0,92·106 

10" 72·103 0,83·10' 28·10' 4,3·106 

10" 333·108 3,86-109 130-10' 20·108 

It should be noted that for n equal to 1022 and 1023 the 
Fermi energy respectively amounts to 1.5 and 7.2 eV 
which is less than the ionization energy for hydrogen. 
Therefore such hydrogen does not yet possess metallic 
properties and our formulas are not applicable to these 
densities. Only beginning with approximately n = 1024 

will the formulas hold for a hydrogen plasma. We note 
that the density of liquid hydrogen is equal to n = 2 x 1022 

and at this stage it does not yet possess metallic prop­
erties. 

3. For n = 1030 we have f3F = VF/C = 0.7, so that in 
order to be able to continue Table I into the domain of 
greater densities a relativistic calculation is necessary. 
The Fermi energy EF can in this case be determined by 
the formula (and correspondingly TF = EF/K) 

eF = yln•c• + c2pY.- me2, P•· = (3n2h3n) 'I• (17) 

(in particular, in the ultrarelativistic case we obtain 
EF R~ CPF ~ n113 , TFR~ CPF/K ~ n113 ). The total energy 
of the gas for T = S = 0 is equal to 

PF P,(V) 

I • 2dpdV V r 
E(N, V)= ~ )'m2e'+c"p2 · ( 2nh)"= 112h3 .J )'m2c'+ c2p2p2dp. (18) 

From here we obtain for the pressure 

oE(N,V) 
Pe= ---av--

(19) 

and then for the speed of sound in place of formula (9) 
we obtain (we assume that Cs < clight): 

_ 1/-----ap; _ PF 1/ m [ ( PF ) 2]-'i• c,- y---- y- 1+ -· . 
Man. m 3M ,me 

(20} 

Accordingly the Debye temperature corresponding 
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to the maximum phonon energy turns out to be equal to 

n z•r, ,; m PF2 [ ( PF ) 2]-'i• 
Tv=- C 5 kmax =--= y-- 1 + -

x Y3 M 2xm me 
(21) 

(under ultrarelativistic conditions To~ TF(2 2/ 3PF/3Mc)112 

« TF ). We finally obtain the temperature for the transi­
tion to the superconducting state. From the definition 
(17) we find similarly to formula (13) 

oep(n) PFVF On ) 
ep(n + lln) = ep(n)+ ----an-lln = eF + - 3 ---;;:-, (22 

and the Hamiltonian (14) for the interaction with phonons 
has the same form as before, but the coefficient 2 EF/3 
should now be replaced by the expression PFVF/3. 

Thus, in the relativistic case we have 

Dq = _!lFVF v hq ' 
3 2p; Vc 5 

(23) 

where VF = PF/mv'1 +(pFfmc)2 • 

The density of states PF is now equal to 

PF=_!_ \2dpdV= Vp,2 
Oe tQ) (2rtft) a n2ft3VF 

(24) 

and the quantity VintPF = 1'2 remains unchanged as be­
fore. The Bardeen Hamiltonian (12) is not altered, so 
that the fundamental formula (4) for the transition tem­
perature is retained and 1) has its former value 1) 

= 1.14 e-2 = 1/6.5, so that 

(25) 

Utilizing the relativistic formulas (17), (21) and (25), 
we obtain the data for Table II, which is a continuation 
of Table I. We note that the densities n > 1036 corre­
spond already to neutron stars. 

Table II 

n, cm~3 'F· MeV TF• 100 'K I Tv. fOO 'K 

1080 0,26 3 0.1 } Tp 15.4-106 

10" 0,83 9.6 0.37 z 30 57 ·106 

10" 2.2 25,5 1,22 188·106 

10" 5.2 60 3,9 0.6·10" 
10"' 11,8 136 12.4 1.91·109 

10"' 26 300 39 6·109 

1099 57 660 122 2o.to• 

4. We finally consider the transition of a white dwarf 
from the normal state into the superconducting state as 
the pressure is increased. In the absence of a magnetic 
field in the normal state one can obtain the following ex­
pression for the entropy of a strongly degenerate elec­
tron gas 

(26) 

This expression is valid for any arbitrary degree of 
relativistic behavior. From this it follows that under 
adiabatic compression the temperature in the nonrela­
tivistic case increases as T ~ n213, while in the ultra­
relativistic case it increases slower-as T ~ n113 • At 
the same time the parameter Tc -the critical tempera­
ture for the transition-increases in these two limiting 
cases respectively as n2/ 3 and n112, so that in the ultra-

relativistic case the parameter Tc can exceed the tem­
perature T, the result of which will be a transition into 
the superconducting state. Such a transition is not ac­
companied by liberation of heat, and is a transition of 
the second kind. 

We now consider the case when a "frozen-in" mag­
netic field exists within a white dwarf. In this case a 
"supercooled" state is possible when the temperature 
is already lower than the critical temperature (T < Tc), 
but the transition of the dwarf into a superconductor is 
hindered by a magnetic field H. As is well known, for 
this to occur the value of H must exceed a certain criti­
cal value Hc(T) which depends on the temperature T 
(for T < Tc)· This dependence (both the theoretical one, 
and the experimental one for ordinary metals) is well 
approximated by the formula 

Hc(T) = Hc(O) (1- T2 I Tc"), (27) 

which is also valid in the relativistic case .1 > 

Further we shall in general utilize only the "relativ­
istic" formulas, without stating this explicitly (cf., foot­
note 1 > ). In our case the quantity Hc(O) in (27) turns out 
to be equal to 

(28) 

or numerically (H in gauss, n in cm-3 , taking into ac­
count VintPF = 1'2 and M = 1830 m) we have Hc(O) = 2 
x 10-15n516 • From this, for example, we obtain that for 
n = 1024 Hc(O) = 2 x 105 gauss; for n = 1030 Hc(O) = 2 
x1010 gauss, while for n = 1036 Hc(O) =2 X10 15 gauss. 

In order to obtain an estimate as to how strong are 
these fields and to what extent can they influence the 
dynamic equilibrium of the star one should obtain an 
estimate of the ratio of the gas and the magnetic pres­
sures 

~c = Pgas = Pe 
Pmag Hc2 (0)/8rr 

(29) 

In the nonrelativistic case utilizing formula (8) for Pe 
one can establish that the quantity f3c generally does not 
depend on the density and is approximately equal to f3c 
~ 7 M/m ~ 1.3 x 104• In the ultrarelativistic case from 
the general formula (19) we can obtain 

1 lThe generalization of the usual theory made by us for the relativ­
istic case is not sufficiently consistent - a rigorous theory must be covar­
iant, and must take into account production of electron-positron pairs 
and emission of photons. Since we are utilizing the same Bardeen Hamil­
tonian, then all the formulas of the ordinary theory remain valid, for 
example, the formulas from Sec. 36 of the book by Adriiosov, Gor'kov 
and Dzyaloshinskii [3]. However, in these formulas one should carry out 
the replacement mp0 ...,. PF 2/vF (in the book cited above Po denotes the 
limiting Fermi momentum, i.e., PF ). After such a replacement the form­
ulas are valid in the relativistic domain of PF to the same extent as it is 
justified, for example, to treat an ultrarelativistic degenerate electron gas 
in the manner done in a number of textbooks (cf., for example, [14] ). 

Therefore we do not reproduce a detailed derivation of the formulas 
used in the text, since using the prescription given above the reader can 
derive them himself from formulas· of the ordinary theory. However, we 
note that in contrast to the usual theory in our formulas the matrix ele­
ment for the interaction between electrons is taken to be equal to V int = 
PFVF/6N (cf., formula (23)). 
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and then we have 

~e ~ 8.6Mc/pF ~ 1.6·1()1- (mc/pF) ;;..1. 

For example, for n == 1035 we have PF/mc == 53 and f3c 
Rj 300. 

If the field exceeds the value Hc(O) determined by 
formula (28}, then a transition into the superconducting 
state is impossible. But as the star cools the magnetic 
fields in it diminish and approach the critical value 
Hc(O), and after this the transition becomes possible. 
Since in the case of a transition into the superconducting 
state the magnetic field is forced out from the super­
conductor (the Meissner effect) such a transition must 
have the nature of an explosion of a nova or even a 
supernova. 

As is well known, astronomical observations show 
that such explosions are accompanied by the formation 
around the star of gas nebulae the filamentary structure 
of which testifies to the presence of magnetic fields. 
Moreover, it is known that nebulae formed after super­
nova explosions are sources of intense cosmic radio 
emission, which testifies to the presence in them of a 
large number of relativistic electrons. The explosions 
of novae are not accompanied by appreciable radio 
emission and apparently they do not involve relativ­
istic electrons. 

All these phenomena find a qualitative explanation 
within the framework of the picture proposed by us. 
Indeed, the ejection of the external sheath of a star and 
the formation of a nebula can be explained by the fact 
that the transition into the superconducting state cannot 
occur all at once within the whole body of a white dwarf. 
The external sheath where the electron density is suffi­
ciently small and where the effect of the temperature is 
essential cannot go over into a superconductor. The 
magnetic field pushed out from the interior portion of 
the star will be "frozen-in" in this sheath and the sheath 
will be pushed out by the field into the surrounding space. 

In order to estimate the mass of the ejected sheath, 
we consider the optimum variant in which the energy of 
the expelled magnetic field is a maximum. Such a case 
occurs if we assume that the temperature is equal to 
zero, while the magnetic field at each point of the star 
before the transition has the maximum critical value 
Hc(O}. Then the total magnetic energy of the star will 
be equal to 

w;::~"'= ~ He2 (0) dV = ~ ..!!.!_dV = (-1 ) ~ p.dV, (30} 
S:rt lie lie 

where (1/f3c) is an average value, which for our esti­
mates (cf., formula (29} and further) can be taken to be 
approximately equal to ~10-3 • Further, from the equa­
tion for equilibrium 

dp . dn GM(r) 
dr = m, c,2dr = -p;g = -p;-,-2- (31} 

one can obtain the virial theorem 

ugt = -3 ~ pdV, (32} 

where Ugr is the gravitational energy of the star, and, 
thus, from (30) we have 

wm""'·-~(-1 )lu 1~-1-IU I (33} 
mag - 3 f,c gt 3000 gt • 

The gravitational energy can be estimated in the follow­
ing manner. If R is the radius of the star, and M is its 
total mass, then the energy required for the removal 
(lifting) of the mass AM from the surface of the star to 
infinity is evidently equal to 

!!U=GMb.M/R. (34} 

From this it is seen that the total gravitational energy 
of the star can be calculated by means of the formula 

U =-G r M(r)dM(r) =-!!._[M2 -1-t M2(r) dr]. (35) 
gt J r 2RJr2 

0 0 

Here and in the preceding discussion G is the gravita­
tional constant, while M(r) is the mass contained within 
a sphere of radius r < R. The value of U r depends on 
the radial distribution of the density whic~ can be found 
only by means of a numerical solution of equation (31}. 
However, we can always assume that Ugr == - ~GM2 /R, 
where ~ is a numerical coefficient of the order of unity. 
If throughout the whole body of the star the nonrelativ­
istic case PF «me, holds then ~ == 6/7, but if the ultra­
relativistic case PF » me holds, then ~ == 3/2. Thus, 
from (33} we obtain 

W max= j_ <~> GM2 ~ G M (_!I!_-\ (36) 
mag 3 · fie R R 3000 ) ' 

and comparison with (34) shows that the energy of the 
magnetic field would be sufficient to eject a shell of 
mass AM which amounts to approximately 1/3000 of 
the total mass of the star. 

Utilizing the equation of equilibrium (31) we can find 
that the thickness 15 of the shell ejected in this case can 
be determined from the formula 

(37) 

We also note that the ejected shell contains within itself 
both magnetic fields and relativistic electrons, so that 
in this picture there is no problem of describing the 
generation of magnetic fields and of subsequent accel­
eration in them of electrons up to relativistic energies. 

As is well known, the two last problems usually lead 
to difficulties in interpreting radio emission from cos­
mic objects of the type of the Crab nebula (cf., fm· ex­
ample, [SJ). However, we note that the mass estimate 
usually accepted for the Crab nebula AM ~ 0.1 0, where 
0 == 2 x 1030 kg is the solar mass, can hardly be ex­
plained by the mechanism proposed here, if we con­
sider the solar mass to be a typical mass for white 
dwarfs (cf., however, below). 

5. Apparently, the most difficult problem in the the­
ory proposed above is the extension of phonon concepts 
to such a dense electron-ion plasma and, in particular, 
the problem of the maximum phonon energy or, and this 
is the same thing, of the minimum wavelength. Above 
we have everywhere assumed that in order of magnitude 
we have just as in ordinary metals .\min ~a== n-1/ 3 and 
correspondingly liwo < lies/a. 

However, the plasma considered above does not have 
any regular crystalline structure, and the ions in it do 
not oscillate around fixed equilibrium positions. Our 
phonons are essentially electrostatic oscillations of ions 
whose charge is compensated by electrons. 

In the theory of an ordinary gas plasma such oscilla-
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tions are usually called "ionic sound with an electron 
temperature." Since these oscillations are of low fre­
quency for electrons and of high frequency for ions it 
is not difficult to obtain the dispersion equation for them 
if to the dielectric permittivity for electrons 

15 = R(!J.AI/4.6 M)'lo ::::< 0.02 R. 

one adds an ion term 

Here we have retained the imaginary part with {3i 

(38) 

(39) 

= Vphase/VTi, where VTi = -Jei/mi , which for high 
frequency electron oscillations leads to the well known 
"Landau damping" (cf., for example, lSJ). Then from 
the equation E 11 = E e + .t. Ei = 0 we obtain the dispersion 
law 

(40) 

Here w~i = 47Tne2/mi and in this case Eq. (38)-(40) are 
valid both in the classical, and also in our quantum case, 
but the electron Debye radius de is expressed differently 
in the two cases: 

d,qu = f 1/epFvF /4nne2 = n-'hf11.2vF /c. (41) 

The last formula is also valid in the relativistic case, in 
particular, for the ultrarelativistic case we have vF = c 
and de = 3.33 n-113 • 

From (40) it may be seen that for kde « 1 (i.e., 
A.» de) we have 

{~ 1FM m, (classical case) 
Vph =wo;d,= ~-- (42) 

yp"'vF/3m; = c, (quantum case, cf., (20)) 

The imaginary part of w will be small (Im w « Re w) 
and this means that the damping of the waves will be 
weak if {3i = vph/vn » 1, which is possible in the clas­
sical case only forTe>> Ti. In the quantum case the 
condition {3i » 1 corresponds to strong degeneracy 
TF » T (for Ti = Te = T). In order that the damping 
of the waves should be strong (Im w ~ Re w) it is nec­
essary to have f3i ~ 1, i.e., Vph ~ VTi· which, as can be 
easily seen from formula (40), in both cases corre­
sponds to small wavelengths of the order of the Debye 
radius for ions (at the same time kde » 1) 

k,;,~, ~ 1/d1, ),;,\,~2nd;= 2n ye;/4nne2 • (43) 

The "plasma" values of k~ax and A.~in obtained in this 
manner, which as a result of damping cut off the spec­
trum of ion-acoustic oscillations, should be compared 
to the "solid state" values for phonons utilized by us 
previously (cf., formula (6)): 

(44) 

If into formula (43) we substitute for Ti the temperature 
T c of the transition into the superconducting state found 

earlier in Tables I and II, then we obtain approximately 

kpl {6 for n = 10 .. 
k:ax ~ 1 for n = 1Q3o. 

_1/a for n = 1J35 

(45) 

From this it may be seen that, for example, at a den­
sity of n = 1025 the values of the temperatures TD and Tc 
be increased by approximately a factor of six compared 
to their previous values in Table I. In accordance with 
this the critical magnetic field will also increase by a 
factor of six (cf., formula (28)) and this means that the 
mass of the stellar shell ejected as a result of the ex­
plosion can increase by a factor of 36. 

We note in conclusion that the applicability of the for­
mulas utilized in the present paper taken from the usual 
BCS theory in order to describe the superconductivity 
of a dense plasma requires, of course, a more detailed 
justification. Earlier Abrikosovl7J investigating the 
properties of a highly compressed substance under 
somewhat different conditions, and in particular for 
T = 0 and in the presence of a crystalline lattice, came 
to the conclusion that in such a "solid state" system 
superconductivity can be only an exponentially small 
effect (in particular, he had Tc ~ .t. ~ exp (-:5vF/e 2 ) 

- e-137 for vF <<c). However, in this case he assumed 
that the strong inequality K = 1/de « kF = PF/:5 was 
valid which actually does not hold (in l7l it is assumed 
that VF « c), and he completely neglected the phonon 
attraction between electrons in the region k < kF al­
though the latter is essential for the BCS theory. But 
the phonon spectrum of the lattice in the region k ~ kF 
is not known exactly, and therefore Abrikosov's conclu­
sions also need to be made more precise. 
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