
SOVIET PHYSICS JETP VOLUME 29, NUMBER 1 JULY, 1969 

INTERACTION OF ATOMS WITH ELECTRONS AND IONS IN A PLASMA 

A. A. LIKAL'TER 

Submitted June 10, 1968 

Zh. Eksp. Teor. Fiz. 56, 240-245 (January, 1969) 

The contribution made to the thermodynamic potential of a plasma by the dipole and quadrupole inter­
actions of the atoms with the electrons and the ions is calculated. The derived expression is used to 
calculate the decrease of the ionization energy of negative ions. 

IN a fully ionized plasma, an important role may be 
played, besides the Coulomb interaction of the charged 
particles, also by the interaction between the atoms and 
the electrons or the ions. In the multipole expansion of 
the operator of the interaction of the atom with the elec­
tron (ion), dipole ( 1/r2 ) and quadrupole (1/r 3 ) terms 
are important. The dipole and quadrupole interactions, 
which do not vanish in the first order of perturbation 
theory, vanish when summed over the states of the 
atom. However, these types of interaction make a 
finite contribution to the thermodynamic quantities, 
owing to the correlation between the atoms and the 
electrons (ions). If the first-order effects of perturba­
tion theory vanish, then the dipole interaction in the 
second order of perturbation theory comes to the fore­
ground. 

1. The potential energy of the interaction of the 
atom with the electron (ion) at a distance that is large 
compared with the radius of the atom, is given by 

b,zke2a•-• 
U(r)= r' , s=2,3,4, (1) 

where bs is a coefficient that depends on the state of 
the atom, z is the charge number of the ion ( ze = -1 ), 
k is the order of perturbation theory, and a is the Bohr 
radius. The constants k and s determine the type of 
interaction. 

The contribution made to the thermodynamic poten­
tial by an interaction of the type (1) between the atoms 
and the electrons (ions) can be calculated by means of 
the formula of Bethe and Uhlenbeck for the second 
virial coefficient[!] 

- r.~Q •• = ~. ~ ( 2:~·r.r [ 2>e-~·. 
n 

+~I] (2Z+1) 861 (K) exp{- 131i~"}aKJ, 
n 0 1 iJK 2m. 

(2) 

where the activity ta is determined by the formula 

~ = e~~.( ma )''' Za (3) 
2nli2 f3 ' 

{3 is the reciprocal temperature, J1. is the chemical 
potential, and Z is the partition function relative to the 
internal states of the particle. For atom-ion interac­
tion, the electron mass must be replaced by there­
duced mass m = mami/ (rna + mi ). The partition func­
tion of the discrete spectrum for an interaction on the 
type (1) is meaningless, and therefore the quantity 
ZaZeL;exp(-!3En) in the first term of formula (2) must 

n 
be replaced by the partition function Z~ of the negative 

ion a- (or the molecular ion for interactions between 
the atom and the ion). Noting that JJ.a + Jl.b = JJ.a, we 
find that the first term in (2) becomes 

~a to ( 2nli2f3 )''• Za- = ~-, 
m. z.z. 

(4) 

i.e., it represents the contribution to the thermody­
namic potential from the free negative ions a- (or 
molecular ions). For this reason, we shall henceforth 
denote by ~Oae the second term in formula (2). 

Assume that the continuous spectrum satisfies the 
quasiclassical criterion 

(5) 

Then the scattering phase liz(K) in formula (2) can be 
replaced by their quasiclassical expression 

61 (1i)= ~ (Y K"-l(l~ 1) _ 2~~ _ v K"-l(l ~ 1)) dr, (6) 

and the summation over l can be replaced by integra­
tion. The integration is carried out in the classically 
accessible region, where the radicands in (6) are posi­
tive. In the calculation it is convenient to integrate 
first over l, and then differentiate and integrate with 
respect to K. The result of the calculation depends on 
the sign of the potential. For U > 0 (repulsion) we 
have 

~ 

- (3~Q,. = ~ ~-4n ~ (e-~u -1)r2dr. (7) 

For U < 0 (attraction) 

- (3~Qae = ~a~· 4n r ( e-PU f ("~(a7.t) 1) r2 -ir, (8) 

where 
~ 

f('/2,-f3U)=) x'l•e-xdx 
-pu 

is the incomplete r function. 
The integral in (7) coincides with the classical inte­

gral, but the integral in (8) differs from the classical 
group integral by a factor containing the incomplete 
r function. This difference is a result of a separation 
of the contribution from the discrete spectrum of 
negative energies, a contribution corresponding to the 
bound states in the two-particle system. It is easy to 
see that for an attraction potential of the type (1) the 
integral in (8) converges when r - 0 (unlike the classi­
cal group integral). Since a potential in the form (1) 
contains a coefficient bs that depends on the state of 
the atom, it is necessary also to sum over the states. 
Changing the variables in the integrals, we obtain 
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ultimately 

where J and M are the values of the total angular 
momentum and its projection, 

(9) 

A = s .. ( e•-• f(3j.,x-•) -1 
C,=B(-z;kb,)A.+O(z;kb,)B,, s ~ f(3/.) x2 dx, 

00 

B, = ~ (e-x-• -1)x2 dx, 

0 

8 (z;•b,) = { 1' 
0, 

z;" b, > 0 

z;"b, < 0 
(10) 

2. Assume that the "condition {3e2/ a >> 1 is satisfied 
(low temperatures). Then, for each level of the atom 
we can separate the principal type of interaction, mak­
ing the largest contribution to the thermodynamic po­
tential, namely, the interaction that has the lowest s 
and does not vanish at this level. Let us consider dif­
ferent types of interaction between the atom and the 
electron (ion)[ 21 . 

A. Dipole interaction k = 1, s = 2. This type of in­
teraction is peculiar to the hydrogen atom (but it 
vanishes in the ground state) and to low-excited levels 
of atoms. Here b2 = -(%)n(nl- n2), where n = n1 
+ n2 + I m I + 1 is the principal quantum number, m 
is the projection of the angular momentum, and n1 and 
n2 are parabolic quantum numbers. The integrals A2 
and B2 diverge linearly at the upper limits, but this 
divergence is cancelled out upon summation over the 
states of the atom differing in the orientation of the 
dipole moment. At fixed n and I m I, n1 varies from 
0 to n - I m I - 1. The coefficients b2 for the values 
of n1 and n~, under the condition n1 + n~ = n - I m I - 1, 
differ only in sign, so that the result of the summation 
over n1 does not change if one adds to C 2 the term 
const · sign(zib2). We choose the constant such that the 
coefficient C2 is independent of the sign of Zib2. We 
obtain 

C2 =A,+Ba= f[!(e•_,f("/.,x-') +e-x-'\-1]x'dx (11) 
2 o 2 r (3!.) ! · 

The integral in formula (11) diverges logarithmically 
at the upper limit and it must be cut off at the Debye 
radius. We then obtain 

C2 ~ 0,67-~ [c -In ( 4n~e2 ~ ~;z;2 r ( Jz;b2 J ~e2a)''•], 
3l'n i 

[ ( 4n~e2 ~ ~;Z;2 r ( Jz;b,J ~e2a)''·~ 1]. (12) 
' 

where c = 0.577 is Euler's constant. 
B. Quadrupole interaction k = 1, s = 3, Here 

1(1+1) -3M2 

ba = Qo 21(21 -1) 

where Q0 is the quadrupole moment (in atomic units), 
J is the total angular momentum, and M is the projec­
tion of the total angular momentum. This type of in­
teraction vanishes in states with J = 0 and Y2. The 
integrals A3 and B3 diverge logarithmically at the 
upper limit, but the divergence is completely cancelled 
in summation over states having different momentum 
orientations. The result of the summation over M does 
not change if one adds to C2 the term const · sign(zibs ). 

Indeed 

~sign(z;b3)Jz;b3 J = QoZ! ~ [1(1+1)-3M2]=0. 
21(21 -1)M~-J 

M=-J 

Redefining C3 in the same manner as C2, we obtain 

c = r [~(ex-3 r(";,x-3
) + e-·-·)-t lx•dx""'- 0,11. (13) 

3 G 2 f( 3/z) · 

C. Dipole interaction k = 2, s = 4. An interaction of 
this type in the ground state is always an attraction. 
Here b4 = - a/2, where a is the polarizability of the 
atom (in atomic units). Calculation of the integrals 
yields A4 ~ 1.61 and B4 ~ -1.21. 

We have used throughout potentials describing the 
interaction at distances that are large compared with 
the radius of the atom. This apparently leads to an 
overestimate of the contribution made to the integrals 
by small distances, and its justification may be the 
smallest of the contribution made to the integrals by 
distances smaller than the Bohr radius. This leads to 
the condition 

(14) 

We note that both the quasiclassical criterion (5 ), and 
the less restrictive condition (14), are the easier to 
satisfy, the larger I bs I, i.e., the stronger the inter­
action and the larger the contribution to the thermody­
namic potential. 

If the interaction of the atom with the electron is 
weak, condition (5) is not satisfied. In the important 
case of polarization interaction, at low energies, we 
can use for the scattering phase shifts an expansion in 
terms of the wave vector, the phases with l ;e 0 turn­
ing out to be small compared with the s-scattering 
phase[3l. If the atom has a negative ion with low bind­
ing energy IE I = ti 2K 2/2me, then the principal term of 
the expansion equals 

Kctgllo = -x. (15) 

Substituting o0 from (15) in (2), we obtain 
1 ( 2nli2~ )';, ---

- ~LlQae =- -~.~ --- ePI•I (1- !ll(l'~JeJ) ), 
2 m. 

(16) 

where ; Plel 

cD(l'~JeJ) = ~ ) e-x' dx 
l'n o 

is the error integral. The condition for the applicabil­
ity of formula (16) is the opposite of the quasiclassical 
condition (5 ). 

3. Taking into account the Coulomb interaction and 
the interaction of the atoms with the electrons and ions, 
the thermodynamic potential of the plasma is given by 
the following expression (for concreteness we assume 
that the quasiclassical criterion is satisfied; in addi­
tion, we assume that the plasma is sufficiently rare­
fied and that the electron gas is far from degenerate): 

- ~g = L ~d + -1-( 4n~e2 ~ ~;z;2 )"' + ~ ~~~ .. ; ~ eB•, 
rt 12Jt i i, a rl 11J.H 

X (~e2a•-'JzN.,J) 3''·4nC, (17) 
where the index d numbers all the plasma components, 
i are the charged components and a the atomic com­
ponents. The first term is the contribution from the 
free particles, the second the De bye term, and the 
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third the contribution from the interaction of the atoms 
with the electrons or ions. The constants k and s 
correspond to the principal type of interaction for each 
level of the given atom. The particle density is calcu­
lated by the formula 

nh = ~J,(-8-) (- ~Q). 
\ 8\,J. ~.v 

For the atomic component we have 

na = ~.[ 1 + ~ ~i ~ ~ e-~·.(~e2a•-1 iz;hb,l 31•4nC,]. (18) 
i anJM 

For the charged component 

n; = ~~[ 1 + ~ YtZ;2 + ~ ~.; ~ e-~·. (~e2aH iz1•b,IJ 31• • 4nc,J , 
a 0 nJM (19) 

where 

Yt = ( 4n (~e2)3 ~ ~;z;' r: 
Equations (17 )- (19) determine the equation of state 

in parametric form. 
If the Coulomb interaction is more significant than 

the interaction of the atoms with the electrons or ions, 
the last term of (19) can be neglected. We put zf = 1. 
Multiplying (19) by 41T ( j3e 2 ) 3zf and summing over the 
charged components, we get y2 = Yt + C/2 )y1; 3 , where 
y differs from Y/: in that l:i is replaced by ni. We 
solve this equation with respect to Yl:: It =yep( y ), 
where cp( y) is the positive root of the equation 

2 2 
<p3+-<p'-- = 0. 

y y 

Expressing by means of (18) and (19) the activities in 
terms of the densities, and substituting in (4), we ob­
tain the equilibrium equation for the ionization of the 
negative ion, with the correction to the ionization 
energy: 

-~Ma-=ln[ 1+ ~ n; -~~ e-~•. 
i 1 + '/,y<p(y) Za nJAf 

(20) 

A similar calculation yields for the decrease of the 
ionization energy of the atom 

-~M. = 2ln [1 + 1/,y<p(y)] +MI.-, (21) 

where the first term is due to the Coulomb interaction 
and the second to the interaction of the atoms with the 
electrons and ions. 

Mal'nev and Pekar[4 J calculated the classical second 
virial coefficient for the dipole-dipole interaction in 
the first order of perturbation theory ( 1/r3 ) of identical 
atoms in different states. This yielded integrals that 
diverged strongly at small distances, and were cut off, 
from qualitative considerations, at a distance on the 
order of double the atomic radius. The result, naturally, 
depends strongly on the cut off parameter. The method 
employed here makes it possible to avoid divergence 
of the integrals, and the use of incorrect potentials at 
small distances does not lead to large errors in the 
integrals. We note, however, that for the van der Waals 
interaction (1/r6 ) a logarithmic divergence does re­
main, and it is necessary to correct the potential at 
small distances. 

The author is grateful to A. A. Vedenov for a dis­
cussion. 
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