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A general description is presented of the evolution of the ultrashort light pulse in a nonlinear-ampli­
fying medium possessing a finite transverse relaxation time T2 and linear radiation losses. It is 
shown that in a medium without linear losses the pulse gradually transforms into several stationary 
"21T-pulses" (the number of which ism+ 1, where m is the number of complete oscillations of the 
quantum system for the initial light pulse), and a "1T-pulse". In the presence of linear losses, all 
"21T-pulses" except the first decay gradually, and the first "21T-pulse" changes into a stationary 
"1T-pulse". It is shown that a stationary "1r-pulse" also appears in a medium with an inhomogeneously 
broadened line, for example, in a gas amplifying medium. It is also shown that self-broadening of the 
resonance line occurs in the field of the pulse during nonlinear amplification; in this case the trans­
mission bandwidth is greater in the case of linear amplification. 

1. INTRODUCTION 

THE propagation of a light pulse in a resonantly ampli­
fying medium is a very effective method of obtaining 
light pulses of very high power. The amplification of a 
short light pulse from a Q-switched laser yields powers 
on the order of 10 GW and even higher[1'21 . Amplifica­
tion of an ultrashort light pulse from a laser with mode­
locking[3J yields powers on the order of 103 GE[•J. 

Theoretically, the propagation of a short light pulse 
in an amplifying medium in the case when the pulse 
duration Tp satisfies the condition T2 « Tp « T1 (T1 are 
the times of longitudinal and transverse relaxation of 
the active medium) has been treated in a number of 
papers[s-wJ. This problem is of interest because non­
linear amplification has made it possible to increase 
the energy and to reduce the duration of the light 
pulse [HJ. However, it was shown theoretically and ex­
perimentally in[1J that when a light pulse from a 
Q-switch laser propagates in a nonlinear amplifying 
medium the pulse duration is not shortened. What we 
get instead is a shift of the maximum of the pulse over 
the leading front. Under certain conditions [l2J, such a 
shift causes the maximum of the pulse to move in the 
medium with super luminal velocity. The criteria for 
reducing the pulse duration in nonlinear amplification 
were found in[13 J. A pulse compression regime in non­
linear amplification was realized in UJ, where a power 
of the order of 10 GW was attained in this manner. 

In a number of papers[14- 171 , the propagation of a 
pulse having a duration on the order of T2 in an amplify­
ing medium was also considered. It was found that 
propagation in an amplifying medium gives rise to the 
so-called stationary "1T-pulse," which inverts the level 
population on passing through the medium. A recent 
paper [181 deals with the formation of a "21T-pulse" by 
propagation in an amplifying medium with T2 =co. These 
effects were rather beyond the experimental capabili­
ties, but the latest progress in the generation and ampli­
fication of ultrashort light pulses in solid- state 
lasers [3' 4 ' 191 and progress in the development of power­
ful C02 gas lasers[ 20 '211 makes this problem timely. 
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In this paper we present a general description of the 
evolution of an ultrashort light pulse in an amplifying 
medium having a finite transverse relaxation time T2 
and a linear radiation dissipation. The main effect is that 
the oscillatory response of the two-level system to the 
strong field causes a gradual breakdown of the powerful 
pulse into several 21T-pulses. If there are no linear 
losses at all, then ultimately several stationary 
21T-pulses are formed, the number of which equals 
m + 1, where m is the number of total oscillations in 
the response of the quantum system to the initial light 
pulse. The presence of linear dissipation of the radia­
tion changes the evolution of the pulse completely. In 
this case all the 21T-pulses gradually attenuate, and the 
first 21T-pulse is transformed into a stationary 1T-pulse. 
It is shown that the stationary 1T-pulse arises also in a 
medium with inhomogeneously broadened light, for ex­
ample in an amplifying gas medium. 

A major feature of the nonlinear amplification of 
ultrashort light pulses is the increase of the bandwidth 
compared with the case of linear amplification. This 
can be interpreted as a result of self-broadening of the 
resonance line in the field of the light pulse. 

2. FUNDAMENTAL EQUATIONS AND GENERAL 
ANALYSIS 

Just as in [11 , we consider the propagation of a light 
pulse in the form of a plane wave, through an active 
medium of two-level particles with inverted population. 
In the approximation in which the changes of the ampli­
tude and phase of the light wave are small over distan­
ces on the order of the light wavelength and in times on 
the order of the period of the light oscillations (the en­
velope approximation), the intensity E(x, t) of the light­
wave field and the polarization p(x, t) of the medium 
(the dipole moment per unit volume) can be represented 
in the form 

E =It (t, x)cos[oot- kx + <p(t, x) ], P = [J> (t, x)cos[oot- kx + .p(t, x) ]. 

(1) 

If the center of the amplification line of all the particles 
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has the frequency wo (homogeneous broadening of the 
amplification line}, then, as shown inuJ, the "slow" 
variables fl, qJ, ff', 1/J and the density N of the inverted 
population satisfy the equations 

0
0fi + /fi +.!...crs = 2noo ff' sin {Ill- cp), 
t {):r; 2 

rs(~+c {)cp)=-2noo5lcos{IJl-cp), ot OX 
off' 1 J.l2 
-at+r;ff' =hNfl sin {IJl-cp), 

[ ~; + {oo- w0) J 51=~ Nfl cos {IJl-<p), 

~~ + ; 1 (N- No) =- ! !f'fi sin (Ill- cp), (2} 

where c is the velocity of the pulse in the medium with­
out active particles, y is the coefficient of linear radia­
tion loss per unit length, T1 and T2 are the times of 
longitudinal and transverse relaxations of the particles 
(inasmuch as the duration of the ultrashort pulses is 
smaller than T1 by many orders of magnitude, the longi­
tudinal relaxation will henceforth be neglected), No is the 
initial density of the inverted population, and J1. is the 
dipole moment of the transition, connected with the 
cross section for the radiative transition between the 
levels ao by the relationao = 41TWT2J1. 2/tlc. In the case 
of exact resonance (w = wo), which will be considered in 
the greatest detail, the number of equations reduces to 
3, since in this case 1/J- 'P = 11"/2. In terms of the dimen­
sionless variables 

t = f I T2, x = x'aoNo, c = c'aoNoT2, a= vI aoNo, 

fi = fi'Tw.lli, ff' = ff'' I No~-t, N = N' I No (3} 

these equations become 

1 ofi ofi 1 a 
~at+Tx"=2ff'-2fi, 

oN 
8t =- fi,q.l, (4} 

We consider first the evolution of an ultrashort pulse 
qualitatively. To this end we change over in (4) to the 
variables T = t- x/c and x = x: 

ofi a 1 off' oN 
ax-=-2fi+2ff', a;=-5l+Nfi, a;=-fiff'. (5) 

The first equation of (5) (multiplying by 2 E and taking 
the third equation into account) can be reduced to the 
form 

a~z aN 
- =-afi2--. 
ox o-r: 

We integrate (6) with respect to T from-"" to T: 

oR 
a;=-aR+1-N, 

• 
R = S fi 2 (-r:', x)d-r:' 

where the function R characterizes the energy of the 
pulse and is equal to the total pulse energy at T = ""· 

(6} 

(7} 

In the case of ultrashort pulses of duration T << T2, 
it is possible to neglect in the second equation o¥ (5) the 
polarization relaxation. Then the material equation can 
be integrated and their solution is 

N =cos II>, ,ap =sin II>, (8) 

where 

II>= S fi (-r:', x) d-r:'. (9} 

It follows from (8) that N and P can be regarded as the 
projections of the unit vector, and <I> as the angle of 
rotation of this vector: <I> = 1T corresponds to a total 
transition of the particle to the lower level, and <I> = 21T 
corresponds to the return to the upper level. In this ap­
proximation, Eq. (7) takes the form 

oR! ox = -aR + 1 -cos II>. (10) 

In the absence of linear loss (a = 0}, the growth of 
the pulse energy is determined completely by the angle 
of rotation <I> of the particles under the influence of this 
pulse. Figure 1 shows the dependence of the gain oR/ox 
on <I> (curve a). If the rotation angle becomes equal to 
<I> = m21T under the influence of the pulse (m is an in­
teger), then such a pulse propagates without a gain in 
energy1>. If the rotation angle is <I> = m21T + /5, where 
/5 > 0 is an arbitrarily small quantity, then such a pulse 
will obviously be amplified until the angle of rotation 
becomes equal to (m + 1)211". If /5 < 0, then the amplifica­
tion continues until <I> becomes equal to m21T. In this 

tiK/d.r 

z 
FIG. 1. Dependence of the 

gain and loss of energy of ultra- t 
short pulse on the rotation 
angle<~>· 

., 

sense, the 21T-pulses are unstable. We can guess from 
curve a of Fig. 1 that the transmission of a pulse with 
<I>> 21T proceeds in "batches," each of which corre­
sponds to a rotation angle 21T. As will be shown later, 
this corresponds to a gradual breakdown of the pulse 
into 211"-pulses. When <I>«: 21T, a linear amplification of 
the pulse takes place. The smallness of the gain in this 
case is due to the condition Tp << 1, which means that 
the spectrum of the pulse is much broader than the gain 
line. 

In the presence of linear radiation loss (a> 0) the 
evolution of the pulse changes radically. For a qualita­
tive analysis, the function R can be replaced by {J<I>, 
where fJ is a certain dimensionless quantity. For ultra­
short pulses (Tp «: 1) with <I> ~ 1, we obviously have 
fJ » 1. The loss aR ~ a{J<I> is plotted in Fig. 1 (curve 
b). The linear radiation loss gives rise to a stationary 
value of the phase <l>s, the determination of which calls 
for knowledge of the value of {J. When the pulse propa­
gates, the coefficient fJ varies until the pulse assumes 
a stationary form. As will be shown below, for a pulse 
of stationary form {3 = 1T/2a, and consequently <l>s = 1T • 

Thus, in the presence of linear losses we can expect 

'>In the case of nonlinearly absorbing medium, curve a of Fig. I re­
verses sign, and consequently such pulses propagate in a medium with­
out absorption. This phenomenon, called self-transparency of the me­
dium, is considered in [2 2 ], which deals with the case of inhomogeneous 
broadening, when the inhomogeneous width is much larger than the 
width of the pulse spectra. In this case the pulses with 4>< 7T attenuate. 
It follows from the form of curve a of Fig. I, that in the case of homo­
geneous broadening pulses with 4> < 27T attenuate. 
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G 
'I formation of one 1r-pulse regardless of the initial value 

of the phase <I>o. 

3. AMPLIFYING MEDWM WITHOUT LINEAR LOSS 

To consider the evolution of the pulse, including the 
relaxation of the polarization, it is necessary to solve 
the system of equations (4). It is impossible to obtain 
an analytic solution of this system, and therefore a 
numerical integration with a computer was used. The 
results of a numerical solution are quite lucid and make 
it possible to present a general picture of the evolution 
of an ultrashort pulse during its propagation. 

We considered the propagation of pulses having on 
the boundary of the medium the form c!f0 (t) 
= Acosh-2 (t/T0} with duration To« 1 and amplitude A. 
Such a pulse corresponds to a rotation angle cJ> 0 = 2AT0 • 

Figure 2 shows the results of the solution for the case 
To = 0.33 and A= 3, when <I>o < 21T. In accordance with 
the qualitative conclusion of Sec. 2, such a pulse can be 
transformed into a 21T-pulse. Actually, as it propagates, 
the pulse is transformed into two pulses: a stationary 
21T-pulse and a stationary 1T-pulse. It is important here 
that, first, the 21T-pulse is produced even when polariza­
tion relaxation exists. In [laJ and Sec. 2, the formation 
of the 21T-pulse is shown for an amplifying medium with 
T2 = oo, i.e., without polarization relaxation. Second, 
the 21T-pulse is followed by the propagation of a 1T-pulse, 
which relaxes the level population to the absorbing 
state. Figure 3 shows the results of the solution for the 
case To= 0.33 and A = 15, when 21T < <I>o < 41T. Such a 
pulse is gradually transformed into two 21T-pulses and 
one 1T-pulse. This tendency is retained also with further 
increase of the pulse power. By way of illustration, 
Fig. 4 shows the results of the solution for the case 
To= 0.5 and A= 20, when 61T < <I>o < 81T. We see here 
that the pulse gets broken up into four 21T-pulses and 
one 1T-pulse. The results of the numerical solution 
agree with the foregoing qualitative picture, and can be 
formulated as follows: if the angle of rotation under the 
influence of the initial ultrashort pulse <I>o = 21T(m + li), 
where m is an integer and 0 < li < 1, then such a pulse 
propagating in an amplifying medium without linear 
losses is transformed into m + 1 21T-pulses and one 
1T-pulse. 

The form of the stationary 21T-pulse can be obtained 
analytically. If we neglect the polarization relaxation 
in the second equation of the system (4), then the propa­
gation of the pulse is described by the equation 

1 08 Q~ 1 (f 1 \ ---+-=-sin J 8(t,x)dt' I· 
c at ax 2 -~ -

(11) 

The stationary solution elf (t- x/v) of Eq. (11) satisfies 
the equation 

(~-_!_)dc!f=_!_sin(1 c!f(,;')d,;') (12) 
c vd,; 2 ~ 

where T = t- x/v. Eq. (12) has a solution of the form 

1 1 
a=---. 

,; 2 'f 
elf(,;)= f -ch-1 ---=, 

a l'2a c v 
(13) 

The indeterminate parameter a can be obtained in 
the following manner. According to (13), the stationary 
pulse has exponential fronts. Consequently, the leading 

2 
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-I 
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FIG. 4. The same as Fig. 2, but '~>o = 20. 

front can be represented in the form i(T} = Aexp(T/To}, 
and it should satisfy the initial equation (11} at suffi­
ciently small values of A. From this condition we get 
the following expression for a: 

1 1 'fo2 

c v 2 

or, changing to dimensional units, 

_!_-_!___=_!_(-·tor croNoT2. 
c v 2 T2-

Then the shape of the pulse (13) becomes 

elf(,;)= _3_ch -t (____:_). 
'fo 'fo 

(14) 

(14a) 

(15) 
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It is easy to verify that such a pulse corresponds to a 
rotation angle 2TT: 

«<I= s ~{-r)d-r = 2:rt, (16) 

i.e., the obtained stationary pulse is a 2TT-pulse. The 
shape of this pulse is similar to the shape of the sta­
tionary 2TT-pulse in an absorbing medium[221 . 

It follows from (14) that the propagation velocity v 
of the 2TT-pulse exceeds the velocity of light c. This 
phenomenon is similar to the propagation of a short 
pulse with exponential leading front in a nonlinearly am­
plifying medium with super luminal velocity, considered 
in u, 121 . Moreover, the expression for the velocity (14a) 
coincides with the expression of[12 J: 

1 1 
---='t'?<o, (17) 
c v 

where T is the slope of the exponential front for the in­
tensity, and K o is the initial gain per unit length. Since 
the width of the spectrum of the ultrashort pulse is lar­
ger by a factor T2/T0 than the width of the amplification 
line, the gain of such a pulse per unit length is K 0 

= <7oNo(To/T2)• Substituting this value of K 0 in (17) and 
recognizing that T = T0/2, we obtain (14a). In spite of 
such a similarity, the shapes of the stationary pulses in 
these cases are entirely different. The reason is that 
when Tp » T2 the stationary pulses must exist in the 
presence of linear losses y (l2J, while the stationary 
2TT-pulse exists in an amplifying medium without linear 
loss. 

4. AMPLIFYING MEDIUM WITH LINEAR LOSS 

In an amplifying medium with linear radiation loss, 
the picture of the evolution of the ultrashort pulses is 
entirely different. It was shown already in [141 , by 
numerical integration, that a low-intensity pulse 
(<l>o « 2TT) is gradually transformed into a stationary 
TT-pulse, which propagates when a « 1 with a velocity 
that coincides practically with the velocity of light. Is 
this tendency is retained if <l>o > 21T? The results of a 
numerical solution of (4) show that, regardless of the 
initial power, the pulse will ultimately be transformed 
into a stationary 1r-pulse. Figure 5 shows the results of 
the solution for the case when <l>o = 37T and a = 0.2. We 
can see clearly the decrease of the pulse energy and the 
gradual formation of the stationary 1r-pulse. 

The shape of the stationary 1r-pulse E(t- x/v) with 
v = c was obtained analytically in[15-171 . We present a 
brief derivation based on neglecting the polarization re­
laxation (Tp « 1), when the propagation of the pulse is 
described by the equation 

1 a~ ars- a 1 s' 
--+-+-~=-sin ~(t')dt'. 
c at ax 2 2 -oo 

(18) 

A pulse in the form ~(t- x/c) is described by the equa­
tion 

Equation (19) has a solution 

X 
'f=t--. 

c 
(19) 

(20) 

:~ I '0 1 _, 

FIG. 5. Evolution of ultrashort N ~:r=zo & 
light pulse propagating in an ampli- 1 
fyingmedium with linear losses (a = N 

0. 2). The initial angle of rotation o 1 

under the influence of the pulse is -I 0 

<l>o = 3!1. ·I 

:~ 
-1 ~ '-------'----1 

The obtained solution is valid for a pulse duration Tp 
<< 1, and consequently when a << 1. It is easy to see 
that a pulse in the form (20) changes the angle of rota­
tion by 1T, i.e., this is a stationary 1r-pulse. By direct 
calculation we can show that for such a pulse the param­
eter introduced in Sec. 2 is (:3 = R/<1> = 2/1Ta. 

It is interesting to note that the duration of the sta­
tionary 1r-pulse can be obtained from rather simple 
qualitative considerations. First, owing to the lossy, 
the pulse energy is stationary: 

c "' ' No -8 .,Z-rp = /iQJo-, 
:rt y 

Second, the pulse produces population inversion: 

l-l~'fp I 1i = n, 

(21) 

(22) 

We have used here the dimensional units Tp and Tp, 

which are respectively the pulse durations in terms of 
the amplitude and intensity. If we recognize that Tp 
Rl ..fi T'P' and take into account the connection between J1. 

and O'o, then we obtain for the pulse duration the expres­
sion 

(23) 

The approximate expression (23) differs from the exact 
one[151 

'fp '= T2( aoNo _ 1)-\n 3+2l'2 
2 y 3-2l'2 

(24) 

by only 10%. 
The main conclusion from relations (20) and (23) is 

that the duration of the 1r-pulse can be much shorter 
than T2 if a << 1. This raises the question of how such 
a pulse is produced in a medium if its spectrum is much 
broader than the spectral gain line. In a resonant elec­
tromagnetic field, the spectral line is broadened by the 
saturation effect by an amount [231 

&or = J.t~ /li. (25) 

Then the inversion condition (22) can be represented in 
the form 

(26) 

where ~wp R: 1r/Tp is the width of the pulse spectrum. 
Thus, the field intensity of the 1r-pulse is maintained 
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such as to broaden the amplification line to a value 
equal to the width of the pulse spectrum. In other words, 
self-broadening of the spectral line takes place when a 
powerful ultrashort pulse propagates. 

From this point of view, we can expect the formation 
of a 1T-pulse in an amplifying gas medium with inhomo­
geneous level broadening, if the line broadening in the 
fie~d exceeds the Doppler width Awnop· In this case, 
owmg to the broadening by the field, the line becomes 
homogeneously broadened with a width on the order of 
AWrs, and the relations obtained for the case of homo­
geneous broadening should hold. This follows also from 
a more rigorous analysis. 

Let the centers of the particle amplification line be 
distributed about the frequency wo with a distribution 
function wn = w(wo + n). Then the line inverted popula­
tion at the frequency w 0 + n is 

(27) 

where N is the total density of the inverted population. 
The system (2) is replaced in this case by 

ars art v 
-+c-+-cft = 2ro:w2? sin ('IJ-cp), at ax 2 

it ( acp + c acp) = - 2ro:w 2? cos('IJ- cp). 
at ax 

a2?o 1 fL2 
--+-2Po = -ng/£ cos(1Jlg-cp), at r, n 

[ a'lln_ + (w- w0 - ~~) J .'flo= ~n.,6 cos(¢o- <:p), at I! 

an" 1 1 
--+-(no- noo)= --fPgft sin('IJ<>- cp) at ri n · (28) 

where fPn and 1/!n are the amplitude and phase of the 
polarization of the particles with line center at the fre­
quency wo + n, and 2? and lj! are the amplitude and phase 
of the total polarization of all the particles: 

~ 

::I' cos (wt + <r) = .\ [Jlg cos(wt + ~:g)dQ. (29) 

In the case of exact resonance (w = w 0 ) and a symmetri­
cal line, we have lj!- cp = lT/2, and the system (28) 
simplifies greatly: 

!..!. + c ~ + .:i.cm = 2ro:oo !'!', at ax 2 
a;;pg 1 1-'2 

--+-2?" =-ng/S cos¢n, at r, n 

( ~1-"- Q )9'o = ~z_ n.,<S sin lj;n, 

an., 1 
-- = -----,;:- f}gft cos 1Jlo, at n 

(30) 

where <J!n now denotes the quantity 1/!n - lj!, and we have 
omitted the term corresponding to the longitudinal popu­
lation relaxation (Tp « T1). 

The stationary solution of the system (30), having the 
form it (t - x/ c), satisfies the following equations: 

dft 1 O"o ( h r . ) -+-it =- N [g -- J Q sm ¢c2P odQ a-r r, yr, f-1 2 _ 00 

dN ___ v_rg, 
d-r: - 4ro:wch ' 

(31) 

which follow from (30) after substituting rs(t- x/c) and 
integrating over the frequencies with allowance for the 
following relations: 

!'!' = r f}g cos 1JlgdQ, r !'flo sin 1JlgdQ = o. (32) 

Equations (31) differ from the corresponding equations 
for the case of homogeneous broadeningr15 l in the 
integral term of the first equation. If the pulse duration 
satisfies the condition 

t P L\wDop~ 1, (33) 

then the estimate for this additional term is 
~ 2 

-~ QsinlJlo!'fl.,dQ::::: ~ ftN(-r:pL\WDop) 2 (34) 

Consequently, in the approximation (33) we can neglect 
this term. Then Eqs. (31) describe a stationary 1r-pulse 
in the medium with homogeneous level broadening. To 
satisfy condition (33), the linear loss y should satisfy 
the condition 

where AWhom = 2Tz is the homogeneous width of the 
line, which is perfectly attainable in amplifying gas 
media. 

(35) 

If an inequality weaker than (35) holds, then a 1r-pulse 
is also produced. To be sure, in this case only particles 
within the limits of the line width are inverted, and the 
particles on the line wings are not inverted. This case 
was investigated by numerically solving the system (31). 
Figure 6 shows the resultb of the solution for the case 

&z n"jnfiO 

rtf! 1./J 

ll.J 

ll 

-IJ.J -u.J 

-t.!l a -f.ll b 

FIG. 6 Stationary n-pulse in an amplifying mediun with homogeneous 
line broadening (L'>wnop T 2 /2 = 0.3) and with linear radiation loss (a = 2.0): 
a- pulse shape and change of the total inverted population; b - spectral 
distribution of inverted population before and after passage of the pulse. 

a= 0.2 and AWDopTz/2 = 0.3, when the condition (35) is 
slightly violated. It follows from Fig. 6b that actually 
the particles on the line wings are not inverted. 

5. CONCLUSIONS 

The results obtained in the present paper greatly 
supplement the picture of the phenomena arising in the 
propagation of a powerful light pulse in a nonlinearly am­
plifying medium, given in u,z,s-taJ. In addition, the non­
linear amplification regime of ultrashort pulses is of 
practical interest, since it makes it possible to shape 
light pulses with a duration much shorter than the limit 
attained in the case of linear amplification. In practice 
this effect can be used, for example, for a pulse passing 
through an amplifying gas medium. 
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