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An expression is derived for the four-photon interaction tensor in a plasma located in a magnetic 
field. The cubic current is found by means of the expression, and general nonlinear equations are 
derived for the self-action of waves in the absence of collisions. It is shown that self-action con­
stitutes a change in polarization and an appearance of amplitude modulation of the wave. These 
processes are of an oscillatory nature. The oscillation frequency is proportional to the wave energy. 
Solutions of the self-action equations are obtained for waves propagating perpendicular or parallel 
to the magnetic field. Resonances are investigated. The results of numerical calculations are pre­
sented. 

THE field of a powerful electromagnetic wave propa­
gating in a plasma produces strong disturbances in the 
medium, and changes, in particular, its conductivity 
and its dielectric constant. This in turn changes the 
conditions of propagation of the disturbance-causing 
wave itself. This is how the nonlinear self-action of a 
wave is realized. 

In a dense plasma, where collisions are significant, 
the principal role in the self-action of a plane wave is 
played by the change of its absorption[l1. We shall con­
sider here a rarefied plasma, where the collisions are 
infrequent enough to be neglected. In this case the ab­
sorption is negligible1 >. This leads to conservation of 
the energy and entropy of the wave, and consequently 
to a reversibility of the nonlinear self-action. This 
characteristic property distinguishes the phenomenon 
considered here from other nonlinear interactions such 
as decay and nonlinear scattering. Self-action of a 
plane wave reduces to a change of its polarization and 
to the occurrence of amplitude modulation. In the ab­
sence of a magnetic field, nonlinear rotation of the 
polarization ellipse was investigated by Tsytovich and 
one of the authors [21 • In the presence of a magnetic 
field, the wave polarization depends on its frequency, 
thus greatly changing the character of the phenomena, 
in that the polarization ellipse experiences a compli­
cated deformation in addition to rotating. This produces 
amplitude modulation of the wave. In addition, at defi­
nite frequencies, the effect becomes resonantly ampli­
fied in a magnetic field. The present paper is devoted 
to a theoretical investigation of self-action of waves in 
a magnetoactive plasma. 

1. FUNDAMENTAL EQUATIONS 

The propagation of a plane electromagnetic wave in 
a plasma is described jointly by the Maxwell equations 
for the field and by the kinetic equations for the elec­
trons and ions. We assume that the wave has a suffic­
iently high frequency w: 

0The generation of harmonic waves leads to a loss of energy of the 
fundamental wave. However, for non-induced processes, this effect is 
quadratic in the wave power W, and consequently is small compared 
with the processes considered here, which are linear in W. 
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Here WHe "' eH/mc is the electron gyromagnetic fre­
quency, and me and Mi are respectively the electron 
and ion masses. In this case we can neglect the mo­
tion of the ions and the thermal spread of the electron 
velocities (if we disregard regions close to resonances 
of the linear theory). The motion of electrons in the 
absence of collisions is then described by the hydrody­
namic equations for their concentration n and for their 
average directional velocity v: 

8n I 8t = -V (nv), 

8v e{ 1 } e -8 =-(vV)v+- E+-[vB] +-[vii.,]. 
t m e me 

(1)* 

Here Ho is the external magnetic field; E and H are 
the intensities of the electric and magnetic fields of the 
wave and are connected by Maxwell's equations. 

We change over to the Fourier representation of the 
unknown functions n, v, E, and H. Equations (1) are 
then rewritten in the form 

nk., = ~ ) d/.2nk,m,vk..,, (2 ) 
(!) 

Vkro=__!_ S{ (vk,m,k2)vk,m,-~{vk,m,Hk,mJ}d~-~Ek., 
ro me mcro 

ie 
---[vk.,Ho], (3) 

mcro 

with 

(k26;; - k;k;- ro2ei;)E; = 4:rtiroji. 

Here Eij is the dielectric tensor in the hydrodynamic 
approximation[3 1: 

p2 iup2 
eu = 822 = 1---··, e12 = - 821 = - --, 1- u2 1- u2 

p = roo. I ro, u = roHe I ro, 

woe is the Langmuir frequency for electrons, and dA. 2 

will be defined below. In the right side of (3) we have 
separated the "extraneous current," which is due to 
the nonlinear effect. 

To find the current ji it is necessary to solve Eqs. 
(2) and (3) simultaneously using, as is customary, the 
method of successive approximations. The expansion 
is in powers of the dimensionless small parameter 

*rvH] =v x H. 



..--------------------- -- - --
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eE/mwc « 1. We have 

ii =i12) +i13) +, .. ; 

dl.2 = ll(ro- ro,- ro2)1l(k- k1- k2)droidroadk1dk2. 
df..a = ll(ro- ro1- ro2- roa)ll(k- k1- k2- ks)dro1dro2droadk1dk2dka. 

The tensor Sijl• describing the "quadratic current," 
was obtained earlier in a number of papers (see, for 
example,[41 ). Allowance for Sijl makes it possible to 
describe three-photon interaction processes (decay and 
coalescence of waves). However, the quadratic current 
makes no contribution to the effect of self-action of the 
wave, in which we are interested i,a the present article. 

The expression for the tensor ~ijls, which gives 
the cubic current, can also be obtained by simultane­
ously solving Eqs. (2) and (3). This expression is given 
in[sJ, and describes various processes of four-photon 
interaction of waves in a plasma in a magnetic field, 
namely the scattering of a pair of photons by each other 
with production of a new pair of photons, frequency 
tripling, and self-action of the wave. Using Feynman 
diagrams, we can represent th_e amplitude of the four­
photon process described by ~ijls in the form of a 
sum of amplitudes corresponding to the diagrams 
shown in Fig. 1. 

The external photon lines correspond here to the 
wave fields Ekw, the _sircles corre~nd to the non­
linear elements JdX2 Sijl and JdX3~ijl, and the wavy 
line corresponds to a virtual photon described by the 
reciprocal Maxwell operator. 

We are interested here only in the particular case 
of self-action of a mono-chromatic wave. In the linear 
approximation, its spectrum is given by 

Ekco= ~ Ell(k-ko)ll(ro- roa(k)), (4) 
a 

where wa(k) is the solution of the nonlinear dispersion 
equation I k26ij-kikj-W2Eijl = O, corresponding to the 
polarization a. 

When account is taken of the nonlinearity, the ampli­
tude of the wave field varies in time. Let us assume 
that it varies slowly compared with the fundamental 
frequency of the wave. The spectral density (4), how­
ever, no longer has a a-function character; it is 
"smeared" near the frequency wa(k ). If the wave 
amplitude is weakly inhomogeneous in space, then the 
spectral density (4) is also weakly smeared. Taking 
this into account, we expand the slowly varying ampli­
tudes in (3 ), assuming in first approximation that the 
wave is monochromatic. In the expansion, following the 
Van der Pol method[ 6l, we place w and k in the left 
side of (3) by the operators 

FIG. 1. 

1 d 
k-+k+--. 

i dr 

Making this substitution in the left side of Maxwell's 
equations, we obtain for a wave of arbitrary polariza­
tion 

( 2k• ~+M~)E.,-NdEv -(k ~+k ~).!!..=_= -4nj<OJ 
rodz dt dt "'dz 'dx ro "'' 

NdE"' +(2k;~+ 2k., ~+M!:_)E = _ 411 .<•> 
dt 6l dz ro dx dt v /v ' 

-(k.~+kx~)~+( 2k"' ~+2~)E = -4n/3>. 
dx dz ro rodx dt • • 

(5) 

Here 

M = 2[1 + p2u2(1- u2)~]. N = -u~(1 + u2) (1- u2)-2; (6) 

The z axis is directed along H0 , and the x axis is 
perpendicular to Ho and lies in the (Ho, k) plane. 
The right side of (5) contains the components of the 
cubic current, calculated with the aid of the tensor 
~ijls (see[ 51 ) for fields having a spectrum (4). In the 
calculation of the current j< 3>, it is necessary to take 
into account the fact that Ek = E-k and w( -k) 
= -w(k ). 

The general solution of the system (5), as can be 
readily seen, is given by functions of the type 

M = 2[1 + p2u2(1- u2)~], N = -u~(1 + u2) (1- u2)-2; (7) 

Here v = dw/dk is the group velocity. The dependence 
of f on t is determined by the nonlinear equations (5) 
without the spatial derivatives. The f( ~) dependence 
is arbitrary and is determined by the initial and bound­
ary conditions of the problem. Thus, the weak spatial 
inhomogeneity of the initial distribution does not influ­
ence the nonlinear process: the amplitude of the field 
is simply transported with a constant velocity v. In the 
case of the stationary boundary value problem, f ( ~, t) 
= const, a stationary distribution f(~, t) = f(O, 
= f ( 0, I r I/ I v i) is produced. On the other hand, if the 
boundary distribution changes slowly in time (for ex­
ample, a high-frequency wave modulated by a low 
frequency propagates from the boundary into the 
plasma, and the period of the low-frequency modulation 
is larger than the characteristic time of the nonlinear 
process), then the stationary distribution is trans­
ported in space. 

Thus, the general solution of (5), for arbitrary initial 
and boundary conditions, can be expressed with the aid 
of relation (7) in terms of the solution of the spatially 
homogeneous problem E = E(t) with initial conditions 
corresponding to the linear approximation. We shall 
henceforth consider only the spatially-homogeneous 
case. 

2. PROPAGATION OF EXTRAORDINARY WAVE 
ACROSS THE MAGNETIC FIELD 

We consider an extraordinary propagating across a 
magnetic field. It has only components Ex and Ey, so 
that the system (5) takes the form 

(8) 
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We seek a solution of (8) in the form 

where a = I Ex I, b = I Ey I, and cp is the phase shift 
between Ey and Ex. We substitute (9) in (8) and 
separate the real and imaginary parts. Separating, in 
addition, the derivatives da/dt, db/dt, and dcp/dt, we 
obtain: 

da 
V- =-M {Aab2 sin 2cp- nb [a2 (B- QY)+ b2 (C- QZ)]coscp} 

dt 

+ N[ba2 (QX- A- E) cos cp- ab2u (C + QZ)sin2cp- b3D2 cos cp], (10) 

db 
V -- = -M {-Aba 2 sin2rr + ua ["2 (8- QY) + b1(C- QZ)] cos cp} 

dt 

+ N [ab2 (QX +A+ E)cos cp + ba2u(B + QY)sin 2cp + a3D1 cos <p],(ll) 

d<r M 
V- = -- {Aa3 b cos 2cp- Aab3 cos 2<p + ab3 (D2 - E- QX) 

dt ab 

where 

+ ba3 (E -D1 - QX)+ u[a'(B- QY)- b'(C- QZ) 

+ 3(C- B)a2b2 + Q(Z- Y)a'b'] sin cp} 

N 
+- {2abu[b2 (C + QZ)- a2 (B + QY)]sin2 <p 

ab 

v = r e2p2 [1- p2(1- p')/(1- p2 - u2)] J-1 

L me'(4-u2)(1-u2)'(M2 -N2 )w 

and A, B, C, D~, D,, E, Q, X, Y, Z, M, N 

- functions of p and u only: 

(12) 

A = 2u' + 16u2 - 6, i3 = 5u2 + 7, C = 6u' + 11u2 - 5, 

D1 = -2u2 - 10, D2 = -2u6 - 24u' + 16u2 - 2, 

2(4- u2 - p2 ) (1- u2 - p2) 

E=-u6 -14u'-9u2
, Q=- 3 [u'p'+(1 p')(4 -p')], 

X= -Su' + 4u2 + 4 + 26'(-u6 - 4u' + 5u2), 

Y = -u' + 8u2 - 7- 66'(1- u2), 

Z = -3u' + 6u2 - 3- 6'(8u'- 10u2 + 2), 

6' = p' /2(4- u2 - p2); 

Expressions forM and N were given earlier (see (6)). 
The system (10 )- (12) describes the self-action of 

an extraordinary wave propagating in a plasma across 
a magnetic field. This system has a first integral: 

M (a'+ b2 ) + 2Nab sin <p = eo. (13) 

From the formula for the wave energy density W[ 7 l it 
is seen that Eo= 81rW. The integral (13) denotes con­
sequently the conservation of the energy density. 

In the linear theory, the wave is elliptically polar­
ized. The axis ratio, the phase shift, and the constant 
Eo are then given by 

a,' u'p' 11 (14) 
_ - = -----, <po =--;-, eo= M (ao2 + bo2) + 2Naobo. 
b02 ( 1 - u2 - p2) 2 2 

Relations (14) constitute the system of initial conditions 
for Eqs. (10)-(12). Using the integral (13), we can 
calculate the angle cp, and then also the time t. This 
makes it possible to find the second integral and to 
analyze qualitatively the solution of (10 )- (12 ). This is 
done in the Appendix. In the general case the ampli­
tudes a and b oscillate with frequency 
a~ e2E0s(u, p)/m2c2w, where f(u, p) is a certain func­
tion of the parameters. The phase shift cp can either 
decrease monotonically or oscillate with the same fre-

quency a. We shall stop to discuss in detail only the 
phenomena occurring in the vicinities of the resonances. 

From an analysis of the structure of the coefficients 
of the system (10)-(12) we see that there are three 
resonant values of the wave frequency: 

I. u2 = 4, 
II. u' = (4- p') (p'- 1)p-', 
Ill. u 2 = 1. 

(15) 
(16) 
(17) 

We shall call these resonances I, II, and III, respec­
tively. Resonance I is well known from the theory of 
nonlinear oscillators, and occurs at a frequency equal 
to half the natural frequency of the oscillator, 
w = WHe/2. The wave propagation condition is n~ > 0, 
where ne is the refractive index of the extraordinary 
wave 

p'(1-p') 
nu2 = 1------. 

1- p2 - u2 

This condition limits the values of the parameter p for 
the resonance in question: 0 < p < f3. 

Equations (10 )- (12) were solved numerically. The 
characteristic oscillations of the polarization com­
ponents a1 =a/Eo and b1 = b/Eo and the changes of the 
polarization ellipse (for p = 1, u - 2) are shown in 
Figs. 2 and 3. Here Eo= (81TW )112. The angular fre­
quency of the nonlinear oscillations is in this case 
a= 79.2a0 , where a 0 = e2E~/m2c2w(4- u2). 

It is seen from Fig. 2 that the phase difference be­
tween the components of the polarization cp decreases 
monotonically with increasing m. Since the quantity 
a2 + b2 and ab sin cp are not conserved, the ellipse be­
comes deformed. This is seen from Fig. 3. The am­
plitude of the electric field, averaged over the high 
frequency, is given by 

Here E is a complete elliptic integral of the second 
kind; a and b are the values of the ellipse semiaxes 
referred to the principal axes[aJ; it is assumed that 

0 rt/2 JTt/2 21t 
Qt 

FIG. 2. 

flt"'Jrt/4 fit ll 

flt·U I flt=rtN flt=ll/2 \1 $ = 

~~,'Th> \. i 
~b~& ~~-,~-~~~, -t-b 

a lb I c d 

FIG. 3. 
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a 2:: b. The amplitude E is shown in Fig. 2 (dashed 
curve). The field amplitude, which is a periodic func­
tion of the time with period 2n/n, can be represented 
in the form 

E = E[1 + J.to cos (Qt + ljlo) + J.tzocos (2Qt + Cl'z<>) + ... ], 
where the modulation depth 11. and the modulation phase 
cp at the frequencies n, 20, ... are determined by_!he 
coefficients of the Fourier expansion of the field E. 
The dependence of the frequency n and of the maximum 
and minimum components a1 and b1 in the resonance 
I on the parameter p is shown in Fig. 4. It is seen 
from the figure that the oscillation frequency increases 
with decreasing p. 

Unlike resonance I, resonance II is a phenomenon 
peculiar to waves: it appears when the phase velocities 
of the extraordinary waves of frequencies w and 2w, 
propagating in the same direction, become equal. This 
indeed leads to the condition (16). The propagation con­
ditions n~ > 0 limit the parameter p in the resonance 
II to the value 1 < p < 12. The frequency of the non­
linear oscillations in resonance II decreases rapidly 
with decreasing p. The amplitude of the oscillation 
also decreases. It is important that if p < 1.18, then 
the phase shift does not increase monotonically, but 
merely oscillates about the value cp = 1T /2 ( cp = 1T /2 is 
the phase difference between the polarization compon­
ents in the linear theory, see (14)). This is seen from 
Fig. 5, where the polarization components and the 
phase difference are plotted against m for p = 1.14. 
Here 

e2Eo2 
Q=6.6----

m2c2co ( uz - 0,623) 

is the angular frequency of the nonlinear oscillations. 
When p > 1.18 the phase varies monotonically. The 
frequency n increases exceptionally rapidly as p ap­
proaches 12. We denote ..f2- p = e, where E -0, and 
obtain 

const &Eo' 
Q=--~. 

e7 mzczoo 

The reason for this growth lies in the fact that as 
p - ...f2 we have simultaneously u - 1, as seen from 
(16); we consequently have an intersection of the reso­
nances II and III. We note, however, that when u - 1 
an increase in the collision absorption of the extra­
ordinary wave[sJ takes place, but is not taken into ac­
count here. By virtue of this, the resonance III at the 

FIG.4. 
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electron gyrofrequency, which appears also in the 
linear theory, will not be considered here. 

We note that there exist such values of the wave 
frequency and plasma parameter ( p, u ), at which the 
state of the polarizations does not change and remains 
the same as in the linear theory. Indeed, it follows 
from {10) and (11) that when cp = 1T/2 we get da/ dt = 0 
and db/dt = 0. If it turns out that in this case also 
dcp/dt = 0, then the state of the polarization is station­
ary. As seen from (12 ), this occurs under the condition 

{ A 1 -r 1 
M -A+ Ko + K

0
(D,-E-QX)+ufK0 lB-QY+ K02 (C-(}Z) 

+~(C-B)+~(Z- Y) l +(E-Dt-QX)} 
Ko Ko -

+N~ 2u[~ (C+QZ)-(B+ QY) J + !!:... -D1 - --c2____QX}= 0. 
~ Ko K~, K~, {18) 

Here K~ = a~/b~ is given by formula (14). The depend­
ence of p2 on u-t defined by Eq. (18 ), is shown in Fig. 
6 (the region u ~ 10 is separated in Fig. 6b). The 
propagation region n~ > 0 is bounded in the figure by 
the dashed curve. 

Thus, as a result of the nonlinear interaction of the 
polarization components, an oscillatory energy pump­
ing from the larger component to the smaller one takes 
place. The initial polarization ellipse then undergoes 
rotation, as well as deformation whose rate is not con­
stant in time. The frequency a-function characterizing 
the spectrum of the weak wave spreads out into a 
linear spectrum w ± nn, where n is the frequency of 
the nonlinear oscillations. The presence of low-fre­
quency modulation can lead to the occurrence of non­
linear absorption of the high-frequency wave, similar 
to the resonant absorption of modulated waves indi­
cated in[ 9 J. We note also that a standing wave of non­
linear polarization is produced in the case of station­
ary boundary conditions. It creates in the plasma a 
unique period lattice. Indeed, the amplitude of the 
plasma density oscillations in the wave field will be 
different in the nodes nk:~ and in the antinodes nk:';!, of 

the polarization standing wave, namely nk~/nk2~ 

= a 11>ja12>, where a<1l and a12> are the longitudinal 
polarization components at the node and the antinode. 
As seen from Fig. 2, the ratio n11l/n12> ~ 1-10. The 

/ 
a / 
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FIG. 6. 
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spatial period of the "lattice" is X = 21Tv/O, where v 
is the group velocity of the wave and 0 is the frequency 
of the nonlinear oscillations2>. 

PROPAGATION OF TRANSVERSE WAVES 

As is well known from the linear theory, transverse­
polarization waves can propagate in a magnetoactive 
plasma across the magnetic field (ordinary wave, 
linearly polarized in Ha) and along the field (ordinary 
and extraordinary wave). For such waves, the equations 
in (5) become much simpler and can be solved ana­
lytically. 

1. We consider first an ordinary wave propagating 
across the field. The electric field has in this case one 
component Ez, so that the equations in (5) reduce to a 
single equation 

~_:_=i e'IE,I'p2(1-p2) E,. 
dt m2c2w ( 4- u2) 

We see therefore that self-action leads only to a fre­
quency shift of the ordinary wave, proportional to the 
wave energy and increasing resonantly as w - WHe/2. 

2. We now consider waves propagating along the 
magnetic field. The equations describing the change of 
the polarization has as before the form (8 ). All that 
change are the expressions for the cubic current ji3 > 

and jf 3>~ Calculating these currents with the aid of the 
tensor :Eijls and using again the procedure of separat­
ing the real and imaginary parts, we obtain equations 
for the components a and b and for the phase shift cp 
in the form 

da I dt = MMb2a sin 2rp + Nb(a2 + b2) cos cp], 

db I dt = -~[Ma2b sin 2cp + Na(a2 + b2 ) cos rp], 

dcp =- ~ sin<p (b'- a')[2Mab sin rp + N(a2 + b2)], 

dt ab 

f\ _ e2p2k2 __ 

- 2mc2w(1-u2)'(M2 -N2) 
(19) 

When u = 0, these equations go over into equations de­
scribing the nonlinear rotation of the polarization 
ellipse in an isotropic plasma [aJ. 

The system of equations (19) has two independent 
integrals 

a2 + b2 = ao2 + bo2 =I., absin<p = aobosinrpo = I 2• (20) 

Here a 0 , b0 , and cp0 are the values of the polarization 
components and of the phase shift in the linear theory; 
these are initial values for equations (19). The values 
of cp 0 can be ±1T/2 and 0. Using the integrals (20), we 
can easily find a general solution of (19 ). When C{Jo 

= ±1T/2, it is given by 

Qt Qt 
a' = a02 cos2 Z + bo2 sin2 2, 

Qt Qt 
b2 = n,Z sin2 - + bo2 COS2 -"'" 2 2, 

2lit must be emphasized that when the kinetic effects are taken into 
account the amplitudes of the density oscillations in the stationary lat­
tice can increase by (c/VTe)2 times, where VTe is the thermal velocity of 
the electrons. The time of establishment of these amplitudes, however, 
is quite large, of the order of X / VTi, where VTi is the thermal velocity 
of the ions. 

<p = arc sin I 1 + -·-"--·--"--- sin2 Qt . { r (a 2- b ')' ]-'''} 
L 4ao' bo' 

(21) 

The frequency 0 is different here for the ordinary and 
extraordinary waves: 

e2p2 (2MI, + Nit)w 2 
~~1 2------ ---- n1 z (22) 
'-m2c2 (1-u2 ) 2 (M2 -N2 ) '' 

where n 1,a is the refractive index for the extraordinary 
and ordinary waves: 

2 p' 
n1,2 = 1- T:t= u. (23) 

It follows from (21) that, unlike in the case of an 
extraordinary wave propagating across the magnetic 
field, in the case considered here the shape of the 
polarization ellipse does not change, and the ellipse 
only rotates with a period T = 27T/O. Therefore the 
quantities a 2 and b2 describe slow time variations of 
the two Stokes parameters ( S 1 and S2 ) of the wave. 
The running value of the third parameter is 

S = ab = 1lz(It2 + 4l22 cosQt)'"· 

If the phase is elliptically polarized, then each of 
the two phase-shifted linear polarizations forming the 
ellipse experience, as is well known, Faraday rotation. 
When cp0 = 1T/2, the electric vector rotates to the left 
(ordinary wave). When cp 0 = -1T/2, the electric vector 
rotates to the right (extraordinary wave). In contrast, 
the direction of the nonlinear rotation of the ellipse, 
determined from (21) and (22 ), depends on the sign of 
the quantity y = 2Mla +Nit. 

If y < 0, then the direction of the nonlinear rotation 
of the ellipse coincides with the direction of rotation 
of the vector E; when y > 0, the ellipse rotates op­
positely to the rotation of the vector E; when y = 0 
there is no nonlinear effect. It is interesting that in an 
isotropic plasma the direction of the nonlinear rotation 
is always opposite to the direction of rotation of the 
vector E. 

The Faraday rotation is usually much stronger than 
the nonlinear rotation. However, it follows from the 
propagation conditions that there exist frequency bands 
in which only the ordinary or only the extraordinary 
wave propagate. In such cases, only one nonlinear ro­
tation determines the slow variation of the polarization 
(when averaged over a time interval much larger than 
the period of the wave). 

It is seen from (22) that as u < 1, and also when 
M2 - N2, the nonlinear effect increases resonantly. 
The latter resonant occurs under the condition 

p2 =2(1+u) 2 lu 

and is realized only in the extraordinary wave when 
u < 1. The phase velocity of the wave decreases in this 
resonance, tending to zero when M2 - N2 • 

We note also that in the propagation of a wave 
linearly polarized at the initial instant we have cp0 = 0 
and I2 = 0, so that its polarization always remains 
linear. Self-action, as seen from (21), leads to a 
shift of the frequency of each of the circular polariza­
tions. Thus, the degeneracy of a wave propagating 
along the field is lifted as a result of the self-action. 

APPENDIX 

The integral (13) makes it possible to simplify Eq. 
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(10)-(12). Indeed, let us eliminate with the aid of (13) 
the angle <p from (10) and (12 ), and let us divide both 
sides of the obtained expressions by the constant quan­
tity E~. We then obtain a system of equations for the 
dimensionless amplitudes and for the dimensionless 
time: 

da 12 1 dr = N" {4S2a1'b1'- [2-M (a,'+ b1 2) ]'} 'h 

X {at2 (u + ~) + bh•t- 6,}, (A.1) 

db, 2 1 
· 1- = -\" {4i\'2a12b12 - [2-M (a1' + b12)]'} 'f, X {a,'y, + bt2 (~- u) + 6,}, 

C T • ~ 

't = eot I V. (A.2) 

Here a, {3, Y1> y2, 151, and 15 2 are functions of the 
dimensionless variables u and p. Eliminating the 
time T from (A.2 ), we can readily find the second in­
tegral of the system (10 )- (12) (detailed calculations 
are given in r5J ). The existence of this integral shows 
that the nonlinear system described by Eqs. (A.1-A.2) 
is conservative. On the phase plane (ai, bi) this sys­
tem has a singular point of the center type. It is also 
the point representing the state of equilibrium of the 
system, since the common factor in Eqs. (A.1)-(A.2) 
never tends to infinity. It follows from (A.1 )- ( A.2) 
that the states of equilibrium correspond also the 
points lying on the curve 

(A.3) 

The initial state of the system (10 )- (12) is represented 
on the phase plane (at bi) by a point having the co­
ordinates 

{ Mr_ (1-u'-p')'l /1-u'-p'J}-' 
ao2 = - 1+----- +N-----

2 l u'p4 .! up' ' 

(1-u2 -p2) 2 

bo' =· ·. 
u'p' 

(A.4) 

The phase trajectory representin!~ the variation of the 
state of the system passes through this initial point. It 
is shown in Fig. 7 (trajectory 1 (u- 2, p = 1)). The 
curve of the equilibrium states (A.3) also passes 
through the same point. The motion of the system is 
along the section of the trajectory 1, shown in Fig. 7 
by the solid curve, and limited by the points of inter­
section with the curve of the equilibrium states (A.3 ). 
The point representing the state of the system oscil­
lates, moving over the indicated section of the curve, 
and being reflected from the equilibrium points. There 
are no closed trajectories on the ( aibi) plane. We 
note that closed trajectories are possible on the 

I a' 

/"'I 
/ ~ 

~ 

' ' \ ' 
\ 0 0.5 I \ 

' b' I ' / 
'-......._ __________ ,_,. 

FIG. 7. 

(a, <p) or (b, q;) plane. An example of such a motion is 
seen in Fig. 5. 

We point out a case when the singular point is 
located at infinity. The phase trajectory is then a 
segment of a straight line, also shown in Fig. 7 (tra­
jectory 2). Eqs. (10)-(12) can then be integratedf 51 • 
An example of such a point is p = 1, u - 1. 

The authors are grateful to A. I. Golubkov, L. V. 
Pari'lskaya, and R. A. Usanova for the numerical cal­
culations. 
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