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A two-temperature hydrodynamics is developed for binary gas mixtures with components greatly dif
fering in molecular weight. Propagation of ultrasound and of shock waves in such a system is con
sidered. When the sound frequency exceeds the inverse relaxation time with respect to energy, the 
lighter component ceases to participate in the oscillations and the sound velocity drops. The damping 
is smaller than that obtained from ordinary hydrodynamics. If the shock wave force exceeds the 
critical value, a "partial-isothermal" discontinuity arises in which the density and temperature of 
the heavy component sharply change. In an extremely strong shock wave there are two discontinui
ties, a density jump of the light component located at the beginning of the wave and a density and 
temperature jump of the heavy component. 

IT follows from papers devoted to the propagation of 
sound[IJ and shock waves[2 - 41 in binary gas mixtures 
that the most interesting effect should be expected in 
the case of a large difference between the molecular 
weights of the components. In this case, however, the 
exchange of energy between the molecules of different 
types is difficult, so that it is necessary to make use 
of two-temperature hydrodynamics, similar to that de
veloped consistently by Braginskil for a fully-ionized 
plasma. Hamel [eJ obtained two-fluid transport equations 
for such gas mixtures from Boltzmann's equations with 
a model collision integral. We derive below similar 
equations for the case of a Boltzmann collision inte
gral and analyze the propagation of sound and of a 
shock wave in such a system. 

If the sound frequency exceeds the reciprocal time 
of energy exchange between the components, then, as 
shown qualitatively in[7 l, the light component does not 
take part in the oscillations, so that the velocity and 
damping of sound are determined by the heavy com
ponent. This leads, in particular, to an appreciable 
negative dispersion of the speed of sound. 

Owing to the presence of the light component, the 
thermal conductivity and the diffusion in the mixture 
are anomalously large, so that the characteristic scale 
of variation of the quantities in the shock wave exceeds 
the free path length. This makes it possible to analyze 
the structure of the wave with the aid of transport 
equations, as was done in[8 ' 9 l for the case of a plasma. 
When the mach number is sufficiently large, a "par
tially-isothermal" jump is produced, in which the 
density and the temperature of the heavy component 
become discontinuous. The region in front of this dis
continuity is richer in light molecules, and in the case 
of a shock wave of maximum intensity there is pro
duced one more discontinuity-a discontinuity of the 
concentration of the light component, separating the 
wave from the unperturbed gas; this phenomenon has 
no plasma analog. Both temperatures and transport 
coefficients vanish in this case. 
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1. TRANSPORT EQUATIONS 

To obtain the transport equations we use Grad's 
method of 13 moments[101 • When the distribution func
tion is expanded in So nine polynomials, this method 
yields the transport coefficient in the first non-vanish
ing approximation. If the cross section does not depend 
very strongly on the velocity, then the error arising 
thereby is small; for the elastic-sphere model and for 
a Lennard-Janes potential [6- 121 , the error, for example, 
is of the order of 1-3% (the error is relatively large, 
on the order of 25%, only for the thermal diffusion co
efficient [II, 121 ). 

We assume that 

(1) 
n2L.22/n,L.,2>-2Ym/ M, T 1 / T2 >-mf M. 

Here m is the mass of the light molecule, M the mass 
of the heavy molecule, n the concentration, T the 
temperature, 2: the effective cross section. The index 
1 denotes quantities pertaining to the light component 
and the index 2 pertains to the heavy component. The 
conditions (1) denote that upon relaxation, the Max
wellian distributions with T 1 "'" T 2 are established 
much earlier than the temperature common to the 
mixture; the relative velocity in the collisions is the 
velocity of the light molecules. 

We write the distribution function in the form 

where ea is the velocity of the molecules relative to 
the average mixture velocity u; 

j"' = n .. (ua- u) = ~ c"'f"'dc"' 

is the diffusion flux of the component a; 

P<> =naTa=~ ~ m .. c .. 2j .. dc"' 

is the partial pressure; 

(2) 
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Pa.in = ma. ~ ( Ca.;Ca.n- ~ Ca.28;k )ta.dca. 

is the tensor of the viscous stresses; 

5T"j" ma (" 
q" = ha. + - 2- = 2 J Ca.Ca?fa.dCo; 

is the partial heat flux. 
We multiply the kinetic equations for the functions 

fa by the Sonine polynomials: 

(3) 

and integrate over the velocities. Using the orthogon
ality of the polynomials (3 ), we obtain a system of 
equations for the moments of the distribution function. 
Taking (1) into account and assuming that all the quan
tities change little over the mean free path1> and during 
the time between collisions, we get 

anool at+ VnaUa = 0 

ap I at + Vup = o, 

(4a) 

(4b) 

(4c) 

where p = mn1 + Mn2; C1 = mndp is the mass concen
tration of the light molecules). In our case, in view of 
the smallness of the ratio miM, it is more convenient, 
generally speaking, to use the molar concentration 
a = n1 In = n1 I ( n1 + n2 ); the equations for it can be 
readily obtained from {4)). 

The diffusion flux {with allowance for (1)) is 

( Kr kp am X 1 ) mj1 =- pD VC1 +-- - VT1 +- Vp 
T, p (1- a) 2M 1'1 

1 
= -:;- (Vp1 + kyn\/T1 -n1Xt); (5a) 

Here X is the force acting on the particle; p = P1 + Pa 
is the total pressure; 1.1 is the effective frequency of 
collision between light and heavy molecules, which is 
connected with the customarily employed diffusion co
efficient D: 

16 T!(1-a) 
v = 3n,Q,11(1- ~) = mD , 

~=----~--~(~5Q~12'~'~---2Q~~~''~')~'~(1~-~a~)~~~~~ 
2Q1211 [a!J1112 + (1 -a) (2'h!J,,11 - 10Qt,12 + 2Q,,'")] 

are known integrals, introduced in[uJ (if a = {;! = 2, 
then T = T 2 ; in the opposite case, T = T1 ); 

M 
kT = ;;:;-- (1- a) 2KT = aa(1- a) 

5a ( 1 - a) ( 5Q1211 - 2Q12") 

2 [aQ11 12 + (1- a) (2512Q1211 -10Q1212 + 2Q1213 )] 

(5b) 

(5c) 

is the coefficient of thermal diffusion of the light gas 
in accordance with [11 ' 121, KT is in accordance with [l4J; 
a is the thermodiffusion ratio[uJ. The diffusion 
velocity u1 - u, which is small compared with the 
thermal velocities of the light molecules, may exceed 

1>we exclude from consideration here a number of interesting spe
cial cases, such as the barodiffusion in a viscous stream, which was investi
gated in [ 13 ]. 

the thermal velocities of the heavy molecules. The 
barodiffusion coefficient is 

kp = (M I m)C12 (1- C1). 

The Navier-stokes equation takes the form 

p(fJ/at+uV)u+ Vp-n,X,-n,X,-2V(Y)f-;~<) =0. (6a) 

Neglecting the viscosity of the light molecules, we 
obtain 

(6b) 

The partial temperatures are determined by the rela
tions 

~n1 ( :t +u,v)r,+PtVut-V(x,VTt)+v(:a kyTfi,) 

mv kT 3m vn, , (7 ) 
--- it'+-~j,VTt = ---(T,-1,), a 

n1 a M 1- n 

2n, (_fl_+ u,V )r, +p,Vu2 - V(x,VT2)-2lJe;n 0fJu; 
2 ~ ~ 

3m vn; =M 1 _~ (T,-T2). {7b) 

The thermal conductivity coefficients are of the form 

75T1 f 1 - a ( 25 13 )] _, x1 = -~ !J1122 + --- - Q,,11 - 10!Jm12 + 2Q;, , 
32m L a 2 

75T2 
X2=----

32M~~2222. 

The heat due to the diffusion is released in the light 
gas, and that due to viscosity in the heavy gas[ 5 J. 

(7c) 

A generalization of the system (4 )- (7) to polyatomic 
molecules is generally difficult; we note, however, that 
the relaxation times of the rotational degrees of free
dom are usually of the order of the time between the 
collisions, whereas for the oscillations these times as 
a rule are quite appreciable. Thus, in many cases we 
can confine ourselves to a replacement of the factor 
% in the left side of (7a) and (7b) by ( Ya - 1 f\ where 
y a = ( Cp I cv ), and introduce, in accordance with 
Mandel'shtam and Leontovich, a second viscosity, 
which takes into account the relaxation of the oscilla
tion[14l. The values of TJ, D12, and kT depend little on 
the structure of the molecules, whereas the dependence 
of the thermal conductivity can be taken into account 
with satisfactory accuracy with the aid of the Euken 
correction [l2J. 

2. PROPAGATION OF SOUND 

The influence of the large difference between the 
masses of the mixture molecules on the propagation of 
the sound was considered in[ 7 J in two limiting cases, 
w >> (miM)v, and w « (miM)v (w-cyclic frequency). 
In this case the velocity of sound changes, for example, 
from a value c0 to c"', where 

Co={y1'/(am+(1-a)M]}'/,, Coo=(y21'/M)'i', (8) 

and 

y= a(y,-vt)+vt-1 

An analysis of the general dispersion equation (of 
sixth order in w) is quite difficult. Its solution, appli
cable for all frequencies, can be obtained only when 



504 L. D. TSENDIN 

a « 1. The influence of the light gas on the sound is 
small in this case, so that in the zeroth approximation 
in a we can neglect the terms containing u1 and T1 in 
Eqs. (6a) and (7b), find from them u2 and T 2, and sub
stitute in (5a) and (7a). Expression then u1 and T1 in 
terms of u2 and T2, and again using (6a) and (7b), we 
obtain equations containing only u 2 and T 2• The solu
tion of the corresponding dispersion equation for the 
particula~ case y 1 = Y2 = y is of the form (k-wave 
vector, U = Mwlmv, and the perturbation is in the 
form exp( -iwt + ikx ): 

w = kV Tv - !..{__!!____ (i._l] + ~ + Mx.(v -t)•) + iaw~ 'If' (9) 
M 2 Mn2 3 y B 

where 

f 3y2- 5y + 3 mvx1 J mvx1 3y2 - 5y + 3 
A=1-iQ _3_( ___ 1)-+-T 2(y-1)• +!.12 T 3' ' 

L y y- n1y · . nt y 

B = 1 _iQ 3-2y + Q2 [--1--+ x1mv ( 1 -~)]. 
3y(y- 1) 3(y- 1) 3Tn1y y 

In the calculations we have neglected the inertia and 
the viscosity of the light component, whose contribu
tions are in higher order of .J m/M, and we have left 
out the rather cumbersome terms due to thermal dif
fusion and the Dufour effect (heat flux connected with 
relative velocity). Usually these terms are small (on 
the order of several per cent of those taken into ac
count) and do not change the result appreciably. 

Figure 1 shows the velocity of sound (curve 1) and 
the absorption (curve 2 ), calculated in accordance with 
(9) for a mixture 10% He-90% Xe. The atoms were 
assumed to be hard spheres with diameters a 1 = 217 A 
and a2 = 4.92 A, in accordance withr111 . Under normal 
conditions w = 1.66 x 10- 8 U [ sec-1 ]. For comparison, 
we show the values of the sound absorption in the same 
model, obtained in accordance with[1J from ordinary 
hydrodynamics (straight line a); the straight line b 
represents the part of the absorption due to the heavy 
component (first term in the curly bracket (9) ). The 
collision frequency of the Xe atoms corresponds to a 
value n ~ 7; at such frequencies, our analysis no 
longer holds. 

3. STRUCTURE OF SHOCK WAVE 

An analysis of a small-amplitude shock wave yields 
results that agree, in the main, with those obtained by 
D'yakovr3l (see alsor131 ; namely, the width of the shock 
wave L is proportional to the attenuation coefficient of 
the (low-frequency) sound, divided by w2• However, 
when y 1 .,._ y 2 there is produced in the mixture an addi-

FIG. I. 

tional attenuation of the sound, due to the slowness of 
the heat exchange between the component[7 l: 

iaw2 ( 1 1 )2 
(- Llw) heatexch.= 6mMvcpCv '\'! -1 - '\'2 -1 

( Cp and cv are the specific heat per unit mass of the 
mixture). This circumstance can lead to a broadening 
of the front of the shock wave by 10-20%. 

In the case of a strong shock wave, the transport 
coefficients can no longer be regarded as constant, so 
that the problem reduces to a numerical integration of 
the system (5 )- (7) for a definite molecular model (we 
note that an estimate in accordance with P 4l of the width 
of the strong wave yields L ~ l.J M/m, where l is the 
mean free path; thus, the equations (6) themselves are 
applicable in this case, too). Let us write out the equa
tions for the shock wave using the same simplifications 
as in the derivation (9 ). We disregard likewise the 
viscosity and the thermal conductivity of the heavy 
components. We put alat= 0 and introduce the dimen
sionless variables 

2T2 v 2v 2mv(ll 
T= Mo2vTI01' Z= v+1 Mco<J1(1-a) x, 

2mv(llx, 
x'= y2y(y+1). (10) 

Mn2ui0! c011!(y- 1) 

The superscripts 0 and 1 correspond to the gas of 
preceding and following the wave front; the Mach num
ber is Mo = u< 0 i I c6° i; a is the concentration of the 
light component in the unperturbed gas. We have 

d (e) v u- w dz v =-~W_u_' 
T= ~(1-w-~+__1_--), 

1-a 2v yM02, 

~[-r(1-a)+ y- 1 w2l= 
~ y J 

v a(i-.a)(y-1) [---''l_-(e-T)+~(u-w)J, 
vl'l ~yv 1- 11 1 -a 

x'-.'!!}_= _Y_[ae +(1-a)-r--2-l + w2 -1. (11) 
~ v+t yM~ 

Eliminating T and writing out the expression for 
dw I dz, we can verify, by using the relations between 
the initial and final values ofr14' 151, that is Mo 
> ( M0 lcrit, then the denominator passes through zero; 
when M0 = ( M0 lcrit. the zero of the denominator coin
cides with the final point. The critical Mach number is 

2 . - 2y+y*(y-1) ·- (t- m ) (12) 
(Mo ) cnt - y(2y• + 1 _ y) , Y - '\'2 a+ M a 1 • 

This means that a continuous variation of w (and T ) 

becomes impossible, and a jump is produced; the 
discontinuous quantities are w, T, d8ldz, and dvldz. 
When M0 increases from ( Mo lcrit, this jump moves 
from the final point towards the beginning of the wave. 
The value of ( Mo lcrit can be obtained by considering 
the stability of the jump against acoustic perturba
tionsr9'14l, which yields the condition for the formation 
of the discontinuity in the form u<li = c:.;i, which agrees 
with (12 ). The necessary dissipation is produced in the 
jump by the viscosity and by the thermal conductivity 
of the heavy component, but allowance for their contri-
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butions is beyond the scope of the present approxima
tion. It is easy to see that for such a mixture, in which 

2y' < y- 1, (13) 

the jump is not produced at all (see, however, Sec. 4). 
It is of interest to compare (12) and (13) with the 

results of Cowling[2l, who calculated, starting from the 
usual hydrodynamic equations, the upper limit of the 
amplitude of the shock wave with allowance for baro
diffusion only. We present data for the He-Xe mixture 
((M~)c-Cowling's data): 

a: 0.1 0.3 0.5 0.7 0.8 0.9 
(Jfi,)crit' 1.11 1.46 2.24 5.52 27.5 
(Mi,lc: 1.1s 1.78 3.03 16.:15 

We see that although the thermal conductivity- of the 
light component was taken into account in the derivation 
of (12 ), this condition is more stringent than that given 
by Cowling. 

Figure 2 shows the results of a numerical solution 
of Eqs. (11) for the 50% He- 50% Xe mixture (the 
parameters for the molecules are the same as in Sec. 
2) at M0 = 2. The solution near the initial and final 
points can be readily obtained by linearizing the system 
(11 ). The condition of monotonic variation of the quan
tities behind the wave front makes it possible to choose 
one of the three roots of the resultant characteristic 
equation; the initial point, on the other hand, is a 
generalized saddle, so that it is necessary to construct 
a family o£ integral curves and to choose a monotonic 
curve from among them. The solutions constructed in 
this manner are joined together at the point tli = tin, 
VI = vu. The velocity w of the heavy component 
changes at the jump from 0.69 to 0.83; the temperature 
tl decreases ahead of the wave much more slowly than 
v. The mean free path of the heavy molecule in the 
region of the jump amounts to 0.5-0.6 in our units. 

Let us consider now the case of an extremely strong 
shock wave M0 - oo, The coefficients of the thermal 
conductivity and diffusion vanish in this case at a cer
tain point ahead of the wave; the velocity and concentra
tion of the light component experience a discontinuity 
at this point. Let us write out Eqs. (11) for the case of 
molecules interacting in accordance with a power law 
Fa(3 = Xa{3/rM: 

d8 ( a bv ) r ay ( w ) ] -·=6·" --+ - '---() 1-- +(1-w)(w-wi'l) 
dz \ 1 - a aw L y + 1 v 

(14a) 

(14b) dv v de y -1 v --=---+e-k __ ·-(v-w), 
dz () dz y + 1 w 

dw =O'-" (y-1~~[3e( 1-a -~)-
dz y(y+1) 2v w v 

v ] r y + 1 ae )-I -fl(1-w)-·--(v-w) L 1---w-- , 
y- 1 y 2v 

(14c) 

where k = ( J.1- + 3 )/2 ( J.1- - 1 ); a and b are constants on 
the order of unity. Dividing (14b) by (14c) we can 
easily see that v remains finite when tl - 0 only if 

1-w 
lim--- =I= oo. 
e-.o 6(1- v) 

From (14b) and (14c) it follows that (1 - w) ~ tl, 
whereas when e- 0 we have lim v = llo >" 1. Thus, 
the solution of (14) near the initial point is given by 

u,w 9 

FIG. 2. 

The value of v0 can be found from the requirement that 
dv/dz be finite when e- +0. 

Figure 3 shows the results of a numerical solution 
for the same 50% mixture of spheres with masses and 
radii corresponding to helium and xenon; in this case 
v0 = 0.626. In order to determine the behavior of the 
solution near the initial point (the coefficient c1 ), it is 
necessary to retain also the coefficients az and bz. 
The numerical calculation simplifies greatly, since 
there is only one solution near the two singular points 
(initial and final); this solution is finite when z- ± 00 • 

The mean free path of the heavy molecule in the 
region of the second jump is of the order of 0.7-0.9; 
the concentration of the light molecules in the hot 
region behind the jump is practically constant. 

4. INFLUENCE OF MIXTURE CONCENTRATION 

We shall assume for simplicity that all the collision 
cross sections are comparable. Figure 4 shows 
schematically the dependence of the collision frequen
cies on the concentration; the frequencies correspond
ing to the vertical lines differ by an approximate 
factor ./m/M; the shaded area is the one bounded by 
the inequalities (1 ). The reciprocal momentum and 
energy relaxation times are vaJ3 and 11~ 1 ; 1121 ~ v~r 1 • 
If the concentration of the light component is lower 
then a 1 = m~ 12/M~ 11 , then the energy and momentum 
relaxation of the light particles takes place on the 
heavy particles, and the partial temperature of the 
light particles becomes meaningless; Eqs. (6) remain 
qualitatively in force in this case, but the expressions 
for the transport coefficients (7) for the light particles 
have to be modified. On the other hand, if az < a < a3, 
where 

8 = ~ anznf-\ W = f + ~ b 11 znlh, V = Vo + ~ Cnznik. 

n=t n=f n~t 

then the density of the mixture is determined by the 
heavy component, but the transport coefficients for the 
heavy particles are determined by their relaxation on 
the light particles, and in this case T2 becomes mean-

u.w 1e 
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ingless. The mean free path l 2 increases with in
creasing a, and when a ~ a 2 it reaches a value 

l:t21/ m 1-a2=- -
LH M' 

This length determines the width of the viscous jump, 
so that when a > a 2 the difference between the con
tinuous and discontinuous solutions for the shock wave 
becomes meaningless. The heavy particles take part 
in the acoustic oscillations at such concentrations only 
when w < v21 + v22; on the other hand, if the frequency 
exceeds lJ12 (but it is smaller than Vu ), then sound 
can propagate through the light component; in this case 
the speed of sound is c' = v'Ty)m. Thus, when sound 
propagates in a mixture with 1 » 1 - a > 1 - a 2, both 
positive (when w ~ v12 ) and negative (when w ~ v12 ) 

dispersion of the speed of sound are possible. 
The author is deeply grateful to L. E. Gurevich for 

a discussion, and also to S. A. Yustinov for the numer
ical calculations. 
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