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It is shown that in a phase transition from a cubic phase to a tetragonal one the minimum of elastic 
energy of the system is realized when the tetragonal inclusions with tetragonality axes situated along 
two cubic directions form a periodic system. These inclusions are plates which are closely adjacent 
to one another, tangent to the (110) plane and are located in a twinned position with respect to this 
plane. The unit cell of the periodic distribution consists of two plates with differing tetragonality axes, 
whereas the period is proportional to the square root of their extent. In turn, this system forms a 
"macroscopic" plate, which coherently related to the cubic matrix. 

Q NE of the fundamental peculiarities of a phase tran
sition in the solid state consists in the fact that it is 
often accompanied by considerable elastic deformations 
of the crystal lattice. At the same time the phase transi
tion occurs in such a manner that at each step the loss 
of free energy of the system due to the deformations 
turns out to be minimal. The minimization of the elastic 
energy is possible because of the optimal form and dis
tribution of the inclusions of the new phase, which are 
coherently bound to the matrix, and also by means of 
the formation of epitaxial dislocations at the interphase 
boundaries (violation of coherence), if the possibilities 
of reduction of the stresses due to changes of orienta
tions and form of the inclusions are limited. 

The purpose of the present paper is an attempt to 
construct a theory by means of which one could find the 
optimal form and orientation of the inclusions of the 
new phase. For this purpose one must answer the ques
tion: what is the energy of a non-simply-connected 
anisotropic continuum with arbitrary CQnfigurations of 
the domains of non-simply-connectedness? The problem 
in such a general formulation does not seem to have a 
solution in closed form. However, such a solution can 
be found if one assumes that the elasticity moduli of the 
inclusions and of the matrix are identical, and that the 
interphase boundaries are coherent. We shall further 
see that for a distribution which is optimal from the 
point of view of elastic energy, the indicated restrictions 
are not essential. 

Let a phase transition in a state free of stress (aij 
= 0, where aij is the stress tensor) be accompanied oy a 
homogeneous deformation of the transformed volume, 
eij(1), where the deformation tensor ejj(1) is referred to 
axes which are related to the crystallographic axes of 

. the matrix. The index 1 denotes the directions of the 
principal axes of the tensor Elj. Owing to the symmetry 
of the lattice of the matrix there exist several other 
crystallographically equivalent directions of the prin
cipal axes, described by the labels 2, 3, ... , p, .... 
Further, the orientation of the inclusions of one and the 
same phase in the matrix will be characterized by the 
indices p. 

If one refers the elastic energy to the undeformed 

state, it can be written in the form 

E=i-~ ~ (0';/(p)Sp(r)e;;(r)+A.;;!mE;;(r)e!m(r))dV, (1) 
2 v (p) 

where aij = ~j lm ezm (p), Aij lm is the tensor of elastic 

moduli, ®p(r) is a function of the shape of the inclusion 
of type p, function which is equal to one inside the in
clusion and zero outside, Vis the volume of the system, 
and the summation in (1) runs over all types of inclu
sions in the system, and over all repeated indices. 

We note that the shape function ep(r) is in general 
multiply connected, i.e., it describes several inclusions 
of type p. Effecting a local variation of (1) with respect 

, to the deformations Eij (r), we transform in the usual 
manner (cf., e.g., m) to the equation of equilibrium of 
the medium 

{)elm ~ a -
l.;;1m-8- =- ~ J;;0(p)-8 Elv(r). 

r; <v> r; 

Transforming (1) and (2) to the k-representation and 
substituting the solution (2) into (1), we obtain 

1 - - - • E =- 2V ~ ~ (k,a0 (p)G(k)a0 (q)k)Elv(k)Elq (k), 
k p,q 

(2) 

(3) 

where ( ... , ... ) denotes the scalar product of the vectors, 
a0 (p) and G(k) are operators, the matrix elements of 
which are the components of the tensors aij(p) and Gij(k), 
where Gij(k) is the Fourier component of the Green's 
tensor of the elastic problem, and 

Elp (k) = S d"rSp (r) e-ikr. 

, The summation with respect to k is over all the points 
of the quasicontinuum . 

If one refers the energy to the stress-free state 
(a ij = 0), one obtains 

E = ~ ~ ~ (a;;'(p)e;/(q)- (k,Uo(p)G(k);;o(q)k)]Elp(k)Elq' (k). (4) 
2 k p,q· 

We consider a simply connected domain s inside the 
matrix which includes all the inclusions. We introduce 
the shape-function ®s(r) of this domain. Then ®p(r) may 
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be represented in the form of a sum of its averages 
over the domain and of the fluctuating part t.ep(r): 

- - - Vp- -
Sp(r)= (Sp(r)) +~Elp(r)= VB,(r)+~Bp(r), (5) 

where vp is the total volume of inclusions of the type p, 
V s is the volume of the region s. We have for the 
Fourier component 

v,, 
Elp(k)= v: EJ,(k)+Mlp(k), (6) 

The function ®s(k) is nonvanishing in a small region 
of k-space, near k = 0: t.k3 ~ (21T)3 /Vs· On the contrary, 
the function t.ep(k) vanishes in this region and is differ
ent from zero a1 distances ~ 27] /ip, where 1p is a 
characteristic dimension of a simply connected inclusion 
of type p. Since the characteristic dimensions of the in
clusions are much smaller than the characteristic 
dimensions of the region surrounding them, the product 
E>s(k)t.®p(k) = 0. Then we obtain, substituting (6) into (4) 

H: = ~~ [~ij~ij- (k, 7Jc (k)~k)Jie.(k) 12 

k 

1 
+ ZV ~ ~ [a;l(p)e;/(q)- (k, ~0 (p)G(k)~0 (q)k)] C.Sp(k) ~8q' (k), 

k )',C/ (7) 

where ~ = 6 (Vp/V s)a0 (p) is the average of the stress 
p 

over the region s. 
The first term in (7) characterizes essentially the 

energy of one large inclusion-"the average crystal," 
having volume V s and subjected to the average strain 

_., v • 
e = ~--,-"- e0 (p) 

p v, 
in a phase-transition in the free state [21 

(8) 

(aij = ~ij zmEzm)· The second term describes the fluc
tuation part of the elastic energy, related to local devia
tions of the stresses a0 (p) from their average values, fi. 

It was shown in[2J that the formation of a single in
clusion of the new phase in an infinite anisotropic con
tinuum is accompanied by a minimum value of the elas
tic energy if the inclusion has the form of a thin exten
ded plate, the normal unit vector no of which is deter
mined by th!l ~conqition of maximum for the quantity 
A(n) = k · (OG(k)Ok), where n = k/k. The energy of such 
an inclusion equals 

E1 = 1 i2(cr;;~;;- A (no)) V,(i + o(D, I L,)), (9) 

where Ds is the thickness of the plate and Ls is its 
length. 

It was shown in[3 J that the elastic energy of such an 
inclusion vanishes, up to asymptotically small terms of 
the order Ds/Ls, if 

(10) 

where n is a unit vector normal to the plate and 1 is an 
arbitrary unit vector. The deformation (10) is plane. 
The part of the elastic energy related to a correction of 
order Ds/Ls coincides with the energy of a dislocation 
loop[3 J situated on the perimeter of the plate. 

Thus, selecting the volume of the inclusions such that 
the average deformation (8) is plane we can in many 
cases make the first term in (7) vanish, up to terms of 
order Ds/Ls. Since the tensor Gij (k) is positive definite, 

the second term in (7) is also positive. Consequently, 
the minimal value which it can take on is zero. Then the 
optimal distribution of inclusions, from the point of view 
of elastic energy, will be a distribution when both terms 
(7) tend asymptotically to zero. If this is not possible, 
the problem of determination of the minimum of the 
elastic energy becomes essentially more complicated. 
However, for a large class of phase transitions the 
vanishing of both terms in (7) may occur. 

We consider as an example the transformation of the 
cubical phase into a tetragonal one. Here there are 
three types of inclusions with the deformations: 

0 0 ) (-e2 0 0 ) 
-e2 0 , e0 (2)= 0 e1 0 , 

0 -e2 0 0 - e2 

(
- e2 0 0 ) 

e"o (3) = 0 - e2 0 , 

0 0 e1 (11) 

where E1 > 0 and E2 > 0 (or E1 < 0, E2 < 0). Substituting 
(11) into (8), one can convince oneself that there is a 
degeneracy, in other words that the plane deformation 
(1) (the asymptotic vanishing of the first term in (7)) 
can be obtained in several ways. This degeneracy is 
lifted due to the fact that the asymptotic vanishing of 
the second term in (7) is possible only in the case when 
one of the three types of inclusion is absent. Let, e.g. 
V3 = 0. Then the procedure for determining a plane 
deformation becomes unique and the tensor 

- vj , v2 o 
Eij = V,, e;/(1) TV,, Sij (2) 

describes such a deformation if 

(12) 

Then the first term in (7) vanishes up to the energy of a 
dislocation loop which encircles the average crystal 
along its perimeter. 

In order to make the second term vanish asymp
totically it is, first of all, necessary to bring it to the 
same form as the first term, and this, in turn, is possi
ble only if1 >: 

L1E>.(k) + Mh(k) == 0, 
ct.83(k) == 0, (13) 

It is just the necessity of the identity t.e 3 = 0 which 
leads to the condition V3 = 0. The first identity in (13) 
is equivalent to the condition that the inclusions of the 
first and second type completely fill the volume Vs, i.e., 
V1 + V2 = Vs· Substituting (13) into the first term in (7) 
we obtain: 

E2 ~ 21l' ~[t.cr;/~e;;"-(k, ll~0G(k)Ll~0k)JIM~!(k) 12, (14) 
k 

where t.a0 = a0(1)- a0 (2), t.€0 = €0(1)- €0 (2). 
It follows from the definition (11) that t.E0 represents 

a plane deformation and is a symmetrized dyadic formed 
by the vectors m = 2-112(110) and 1 = 2-112 (110): t.E0 

= (El- E2) lm x 11. The vanishing of (14) is possible only 
when the function t.el(k) is different from zero, either 

l) All the results are of course independent of permutation of the 
indices that characterize the inclusion type, 
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for the direction 1, or for the direction m. We are then 
led to the conclusion that the function t.61(r) describes 
a set of parallel plates situated in the planes (110) 
(normal to 1 or m) such that the characteristic length of 
these plates, L1 is much larger than their characteristic 
thickness. In this case the function t.61(k) is different 
from zero in a region of k-space having the form of a 
bar, as illustrated in Fig. 1. If one neglects the deviation 
of the vector k in (14) (the error committed in doing this 
is ~dt/L1 « 1), the expression (14) can be rewritten in 
the form 

Since t.fi0 is related to a plane deformation, the ex
pression in the square bracket vanishes (cf. the Appen
dix). Consequently, up to terms of the order di/L1 , so 
does the second term in (7). This result does not depend 
on the ratio of the volumes V1 and V2 , the selection of 
which has allowed us to set the first term in (7) equal to 
zero. These are the circumstances allowing us to mini
mize independently both terms in (7). 

The analysis carried out above shows that the plates 
of the new phase situate themselves parallel to one 
another, in such a manner that the inclusions of differ
ent types alternate and are conjugate with respect to the 
planes (110). In order to determine the period of such a 
distribution one must use (14) in order to investigate the 
correction to E2 = 0, which is of the order of di/L1. For 
this purpose we consider an arbitrary periodic distribu
tion of parallel plates, which are densely adjacent to 
each other, and the total volume of which are in the ratio 
VI/V2 = ei/e2 • The last assumption does not limit the 
generality of the problem, since a nonperiodic distribu
tion is a limiting case of a periodic one, with the period 
a tending to infinity. In this case the period a starts 
playing the role of a cyclic length. 

For a periodic distribution of the plates the quantity 
fl.® 1(k) is nonzero at the vertices of the corresponding 
one-dimensional reciprocal lattice: kh = 21Th/a, where 
h = ± 1, ± 2, ... and h ;>< 0. The vector ko of the reciprocal 
lattice has the length 21T/a and is situated in plane which 
goes through the vectors m and 1, perpendicular to 1. 
Each of the vertices of the reciprocal lattice represents 
a plane disc of length of the order of 21T /Ds and trans
verse dimension 21T /Ls. These vertices can be obtained 
as a result of sectioning the bar in Fig. 1b by means of 
a system of equidistant parallel planes, perpendicular 

1m 

a 

zn, FIG. 1. Schematic representa-
T, tion of the inclusion (a) and of the 

region of the reciprocal lattice space 
within which fl.9 1 (k) is different 
from zero. 

-Jzn~ 
Lt 

a , b 
FIG. 2. a) Section through the "average crystal". The section illu

strates the stacks of plates of inclusions of the flrst and second type, 
which form the traqslated elementary cell. The planes of the plates are 
perpendicular to the plane of the drawing. b) Scheme of the reciprocal 
lattice. The vertices of the reciprocal lattice are blackened. The shaded 
cones describe the characteristic region of the angles by which the .vector 
k may deviate from the direction m. 

to the direction of translation a and separated from one 
, another by a distance 21T/a (cf. Fig. 2b). It can be seen 
, from Fig. 2b that the characteristic angle of deviation 

of the vector k from the direction m is of the order 
a/L1. Since for k II m the expression (14) takes on its 
minimal value equal to zero, the correction will be posi
tive, and will be of the order a/Lh the order of the angle 
between the vectors k and m. Thus 

(16) 

where B ~ ~ ( e1 - e2 ) 2V s and ~ is the characteristic 
elastic modulus. It is clear from (16) that E2 - 0 for 
a - 0. The latter means that the "fluctuational" elastic 
energy becomes minimal when the period a of the dis
tribution of the plates tends to zero, i.e., when the 
''average crystal'' begins to fragment into infinitely thin 
elements. This process stops owing to the fact that in 
the fragmentation of the "average crystal" the number 
of interfaces between the inclusions increases and at the 
same time the surface energy increases. The latter is 

, proportional to the number of plates for fixed total vol
ume of the same and increases as yL~Ls/a ~ yVs/a, 
where y is the coefficient of surface tension on the 
boundary between inclusions of different types. The 
period a is determined from the condition of minimum 
for the sum of the elastic energy (17) and the surface 
energy: 

(17) 

This result shows that the period in the distribution of 
the plates is related to the thickness of the "average 
crystal" according to a square-root law, which in prin
ciple is subject to experimental verification. 

We now must clarify the problem whether the ele
mentary cell consists of two or several plates of differ
ent type. We assume that the initial elementary cell 
consists of several plates of different types (cf. Fig. 3a). 
We further assume that the surface energy related to 
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a b 

FIG. 3 FIG. 4. 

FIG. 3. a) Thicknesses of inclusions forming the initial elementary 
cell. b) The plates of inclusions of each type within the volume of the 
initial elementary cell become equal. The ratio of the thicknesses of 
inclusions of different types is d1 /d2 = E 1 /E2 . 

FIG. 4. The optimal distribution of inclusions. The arrows denote 
the directions of the tetragonality axes. 

the boundary between the inclusions is constant. This 
means that the number (but not the size) of the inclu
sions which form the "average crystal" is constant. In 
this situation a decrease of the period a, necessary for 
a decrease of the elastic energy is possible only on ac
count of a reorganization of the initial elementary cell, 
when the number of inclusions in this cell does not 
change, but the thicknesses of the inclusions of each type 
become equal among themselves, whereas the ratio of 
the thicknesses of inclusions of different types are dJ)d2 

= EJE2 (Fig. 3b). Then the elementary cell becomes two 
inclusions of different type, with the indicated ratio of 
thicknesses, which are tangent to each other along the 
plane (110). 

The results obtained can be briefly formulated as 
follows: The formation of tetragonal inclusions in a 
cubic matrix leads to a minimal loss of elastic energy 
if two conditions are simultaneously realized: a) the 
inclusions have the form of thin plates, which are 
densely in contact with each other and which form the 
"average crystal"; b) the inclusions form a one-dimen
sional periodic structure, the elementary cell of which 
consists of two tangent planes, in touch along the (110) 
planes with perpendicular tetragonality axes. 

Thus, one might expect that in realistic cases there 
appears the distribution of inclusions represented in 
Fig. 4. 

Inclusions with different tetragonality, as can be 
seen from Fig. 4, are situated in twin positions with 
respect to the twinning plane (110). The inclusions of 
each type have the same thickness, and the ratio of the 
thicknesses of inclusions of different types is d1/d2 

= E 1/ E2, whereas the period of the distribution is a D~12 , 
where Ds is the thickness of the "average crystal." 

Such a structure has indeed been repeatedly observed. 
A good illustration is the electron-micrography of the 
structure of the ordered alloy CuAu, obtained by 
Syutkina and Yakovleva. l 4 J 2 > 

It is interesting to note the fact that the results of 

2lThe alloy CuAu is described by the theory developed above, since 
the phase transition consists in the formation of a tetragonal ordered 
phase CuAu from a disordered solid solution. 

FIG. 5. An electron-microscope picture of the structure of the alloy 
CuAu in the (100) plane. 

considering one inclusion in the matrix, which lowers 
the energy due to internal twin-formation is to some ex
tent analogous to the optimal distribution of the system 
of inclusions in the matrix, obtained by us. A twin sys
tem of this type has been investigated in the paper of 
Rol.tburd [SJ. 

The above consideration is applicable to a whole class 
of systems in which the phase transition is not accom
panied by a redistribution of the concentration. These 
are ordered substitutional and interstitial solid solu
tions (some ferroelectric materials, cases of polymor
phism, etc.), if in all these systems there occurs the 
formation of a tetragonal phase in a cubic matrix. 

For the enumerated systems the elasticity moduli 
change in the phase transition, as a rule by not more 
than 10%, which in itself makes it possible to apply the 
results of this theory to the class of systems under dis
cussion. However, there exists another more profound 
reason for the possibility of using the computational 
data for the investigation of heterophase systems with 
different elastic moduli. This reason is related to the 
fact that the elastic energy of the optimal distribution 
of the inclusions is asymptotically zero, which speaks 
of the absence of elastic deformation (with the exception 
of boundary effects of the order of Ds/Ls << 1, and 
dt/L1 « 1, occurring due to the deformations of the 
matrix only). Since the elastic deformation inside the 
inclusions is absent, the magnitude of their moduli does 
not affect the elastic energy of the system. 

In conclusion the authors express their thanks to 
V. I. Syutkina for kindly making available photographs 
of the structure of CuAu and to A. L. Rol.tburd for a dis
cussion of the results of this paper. 

APPENDIX 

We prove that the term in the square brackets in (15) 
vanishes if ~E0 = (E1- E2) lm x 11. Since G(km) = k-2G(m), 
we have 

B = (km, &~0G(km)&~0km) = (m, &,;.,G(m)&~m) 
= mitJ..OijfJGjp 6.apq0mq = md1Uij0G jp'Apq1·s.t). Crs01nq 

= (et- e2)m,&a,;"G;pApq,m,mql8• 

Since by definition Apqrsmrmq = GiJ~ we obtain, using 

the trivial relation GjpGp~ = 6 js: 
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which implies the result. 
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