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A new variant is proposed for a unified geometrical description of gravitational and electromagnetic 
fields. Both fields are described in an affinely-connected space with non-zero tensors of curvature 
and torsion. The expression for the coefficients of affine connection obtained depends on both fields. 
The extent of the effect of the electromagnetic field on the geometry is determined by a new constant 
with the dimensions of length, l 0 , for which experiment sets the limitation lo $ 10-14 em. Possible ex­
periments which would permit a judgement on the validity of the theory are discussed. Finally, the 
author discusses the possible relation between geometrization of the electromagnetic field and viola­
tion of T-invariance. 

1. INTRODUCTION 

SINCE Einstein's development of the basic theory of 
general relativity there has been an almost endless num­
ber of attempts to generalize the original theory so as 
to give geometrical meaning to the electromagnetic 
field. Such schemes came to be known as unified field 
theories (cf. e.g., Einstein, Collected Works[1J). In our 
times, the use of this all-inclusive term for theories of 
gravitation and electromagnetism seems excessive 
since other elementary interactions (strong, weak) are 
now known to exist; yet, in our view such a theory, in 
the original sense and in itself, retains significant inter­
est. The justification for studying a unified description 
of the electromagnetic and gravitational field, in as a 
first step towards a possible geometrical theory of all 
interactions 1 >, is to be found in the comparatively simple 
interpretation of the electromagnetic field (as compared 
to lepton and hadron fields) and the similarity of certain 
of its properties with those of the gravitational field: 
both are describable by tensors of second order, corre­
spond to zero rest- mass, satisfy gauge- invariance con­
ditions, etc. 

In this paper we examine a new method for describ­
ing gravitation and electromagnetism. Our procedure 
is based on the hypothesis that the gravitational and 
electromagnetic fields (the latter even in the absence of 
the gravitational one) constitute a measure of the geom­
etry of space-time. Gravitation without the electromag­
netic field is described by the general theory of rela­
tivity. The geometrical description of the electromag­
netic field, in the absence of the gravitational field, has 
been developed in our previous article[3 J (henceforth 
referred to as I). Here we formulate a unified geometri­
cal theory which contains, as special cases, the general 
theory of relativity and the scheme developed in I. 

Since it is neither our purpose nor feasible to recount 
here the content of our previous work1 >, we shall only 
present a brief account of the essential assumptions and 
results: We investigate a Minkowski space (metric de­
fined by the line element ds2 = (dx0 ) 2 - ctr) with affine 
connection (defined by the operation of parallel-transfer 

1 >Earlier attempts at geometrization were made, for example, for the 
case of weak interactions [2 ] . 

oAi =- L~kAj oxk) and absolute parallelism (the curva-
J . 

ture tensor Bjk l , defined by the coefficients of affine-

connection r{k' cf. Eq. (2.4), is zero). To avoid mis­

understanding, we emphasize that our space is .non- . 
Riemanni~n (we do not impose the conditions Ljk = I{j 

and the L~k are not the Christoffel symbols, for which 
J . 

we reserve the notation rjk). 
Under the foregoing assumptions the most general 

form of Ljk 
(1.1) 

where a = ajaxk F:s = osiF .. Fi· = oimF (oij = 0 
k .. ' J· Jl' .s ms ' 

i .- j, 6°0 = 1, on= -1, i = 1, 2, 3) and the tensor Fmn is 
such that the matrix I + F is orthogonal. The orthogon­
ality condition imposes 10 restraints on the tensor F mn• 
leaving only 6 free components. We may select the com­
ponents antisymmetric part of F mn• viz., fmn 
= %(F mn - F nm), as the free ones, and then relate the 
tensor fmn to the electromagnetic field Emn; the sim­
plest assumption, of course, is that fmn is simply pro­
portional to Emn (cf. infra): 

fmn = A.Emn• A= ± l~{e. (1.2) 
Here we introduce a new constant l 0 , with the dimen­
sions of length; the appearance of the electron charge e 
in the definition arises only from considerations of con­
venience. 

A characteristic feature of the affinity (1.1) is that it 
leads to a non-vanishing torsion tensor of the space: 

Q)k='I.(Lh-L~;)=f=O. (1.3) 
In this way electromagnetism is described in a space 

with torsion but without curvature, in contrast to gravi­
tation in which the converse situation obtains. The 
natural union of these two cases is a common space 
with both curvature and torsion. 

2. PARAMETRIZATION OF THE AFFINITY 

We shall study a 4-dimensional space with coordin­
ates x = {x0 , x\ x2 , xs:}2 > and the standard metric form 

2>Information on spaces with affme-connection can be found in 
standard works ( cf. [4 ] ) • 

562 
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(and notation) 

(2.1) . 

The operations of parallel-transfer and covariant dif­
ferentiation are, as usual, determined by the coefficients 
Ljk' which are taken to transform according to: 

i iJx1 iJx'' iJx'" ·~ iJx1 a•x·~ 2 2) 
L;k = ax·~ iJxi ax• L,, + iJx'P. iJxi fJx" . ( • 

In order that the metric tensor gij (x) obtain from the 
metric tensor glj (x') by the operation of parallel-trans­

fer, we require 

g;;;k = 0; (2.3) 

where the notation ;k indicates covariant differentiation. 
These conditions establish the correspondence between 
the metric properties of the space and the properties 
of parallel-transfer. As is well-known, the coefficients 
dk do not constitute a tensor but from them we can con­
struct two tensors which define the geometry of the 
space, viz., the curvature tensor 

B)kl =- iJtLJ• + a.L)l- L}.L!t + L}tL!k (2.4) 

and the torsion tensor given by Eq. (1.3). If we impose 
the conditions nfk = 0, then we have a Riemannian space 

and from Eq. (2.3) the coefficients of the affine-connec­
tion are the usual Christoffel symbols 

(2.5) 

and the space is that of general relativity. 
Here, we shall not assume that n = 0, i.e., we allow 

a non-symmetrical affine-connection and, of course, 
Eq. (2.5) does not apply. 

Since our goal is a unified description.of gravitation 
and electromagnetism, the coefficients L~k must now be 
determined not only by the metric tensorJ gij (Riemannian 
case) but also a certain quantity describing the electro­
magnetic field. Based on our prior work, as sketched in 
the introduction, we take for such a quantity a second­
rank tensor F mn on which we impose the conditions: 

(2.6) 

which generalize the previous orthogonality condition; 
the raising and lowering of indices following the rules: 

k· _km ·s sm 
F.s = g-- Fms' Fz. = g Fzm· 

Thus, our first task is to determine an affinity de­
pending on gij, F mn' and their derivatives, and satisfy­
ing the transformation law of Eq. (2.2) as well as the 
conditions given by Eq. (2.3). Furthermore, it is clear 
that when Fmn = 0 we must obtain Eq. (2.5) and when 
gij = oij we must obtain Eq. (1.1). Various methods may 
be used to obtain the form of the affine-connection satis­
fying the conditions imposed. Here we describe a 
method, based on the Lagrangian variational procedure, 
for a Lagrangian suitably generalized to our problem 
from the original Einstein form, depending on the invar­
ia.nce of the Lagrangian with respect to variations of the 
Ljk' gij and F mn· 

It is well-known[ 1J that in the general theory of rela­
tivity one may consider the gij and L}k as independent 
at first and that the (Einstein) Lagrangian density 

(2.7) 

(where the notation is conventional and Bfk l is gi':en by 

Eq. (2.4)) yields Eq. (2.5) under variation of the L~k and 
the gravitational field equations under variation J 
of the gik. 

Now, as indicated above, we propose to generalize 
the Lagrangian (2.7) to the form: 

:£ = fg BJlk (6\ +Pi~) (gi" + pi•), (2.8) 

and we shall try to find the expression for Lfk in terms 

of gij and F ij as solutions of the equations 

f). f):£ ~ = 0 (2.9) 
• a ( a;L;;',) ac::. · 

After obtaining the solution we shall show that the neces­
sary conditions, as formulated in the preceding section, 
are satisfied. With the use of Eq. (2.6) to simplify the 
result, Eq. (2.9) gives us 

£';;,[ = lj, (gkn + pnk) (6:, + p,;.~) (iJtgk, + iJ,gkl- akg,t) + (b~ + F:';) DIP;,.': 
(2 .10) 

which, using Eq. (2.5) for rjk' can be reduced to the 
more convenient form 

L':n1 = (o; + Fn;) (o;,. + p;,.~) r;, + (o'k + F~k) iJ/;;,•. (2 .11) 

This is the sought expression for the Lfk in terms of the 

gij and Fij· We note that Eq. (2.11) could be obtained 
using only the general properties of the affinity without 
reference to the Lagrangian formalism; however, our 
derivation reflects better the physical nature of the 
theory. 

3. CHARACTERISTICS OF THE AFFINITY. EQUA­
TIONS OF THE GRAVITATIONAL FIELD. 

First of all, it is easy to verify that the affinity (2.11) 
reduces to well-known results in the appropriate special 
cases. When there is no electromagnetic field Fmn = 0 
and Lfk = rfk' as required for a purely gravitational 

field. When there is no gravitational field one can always 
choose a system of coordinates such that r~k = 0 every-

• J 
where, and Ljk reduces to (1.1) as required for a purely 

electromagnetic field. 
We shall, further, check the validity of the trans­

formation law (2.2), i.e., we shall verify that (2.11) is 
an affinity. Under the transformation x - x' the quanti­
ties appearing in Eq. (2.11) transform according to: 

(3 .1) 

Substituting these expressions in Eq. (2.11) we find that 
certain terms mutually cancel and the rest take the form 

The last term is identically zero by virtue of the condi­
tions of Eq. (2.6), and this completes the proof. 

In similar fashion, it is not difficult to verify that the 
second set of conditions, Eq. (2.3), are also satisfied, 
viz., 
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Here, again, the conditions of Eq. (2.6) are essential. 
Thus, the affine-connection (2.11) derived, satisfies 

all the imposed conditions and we can formulate our 
first basic postulate, viz., the affinity of a space in the 
presence of both gravitational and electromagnetic 
fields3 > is given by (2.11). 

As remarked before, the affinity determines both 
curvature and torsion tensor. The latter is given by 

Q;:'k = 1/ 2 (cW' + F':'i) [IV;.~ -iJ,.Fi.~ + F;.~r!k-Fi.~l'!..J. (3.4) 

To obtain the curvature tensor one may substitute (2.11) 
in (2.4) and carry out the necessary calculations; how­
ever, we shall take a simpler approach. We write (2.11) 
in the form 

iJkF;.~= (II~+F .. ~) L;:.k-(II:;.+F;.~) r~k (3.5) 

and use the obvious relation (condition of integrability 
of Eq. (3.5)) 

iJ,[(II~+F;.~) L;:.k- (II:;. +F;,.~) r~k)-iJk [(II~ +F~~) £::.,-(11:;. +F;,.~) I'~,] 
=0. 

After differentiating and again using Eq. (3.5), we obtain 

(II~+ F;.~)B::.,k-(11:;. + F;.~)R~sk = 0, 

where R~sk• constructed from the Riemannian rtk' is 
the familiar curvature tensor of general relativity. 
Hence, finally 

(3.6) 

With this result at hand, we can vary the Lagrangian 
(2.8) with respect to the gmn to obtain the gravitational 
field equations. Let us rewrite the Lagrangian (2.8) in 
the form 

!£ = fg (lit+ Fi~) (II!+ F!;)g'1 Bjzk· 

The tensor Bfkl depends only on the L~k' and only the 
factor preceding it needs to be considered in the varia­
tion of the gmn. Then, taking into account (3.6) and (2.6), 
we find 

R 1 R+ iJFi~ (.c pi·) ~~" ,z R . (3 7) 
mn- 2 gmn i}gm" u~ + ·~ g g (RI"slll- lll!"l) = 0, • 

h -Ri _ mn _ {:3 
w ere Rmn- min• R- g Rmn• Rj.Lsla- gj.l.~sla· 
The last term in Eq. (3.7) is zero because of the sym­
metry properties of the tensor Rj.Lsla UJ. Equation (3.7) 
thus reduces to the Einstein gravitational field equations 

(3.8) 

This result is easily understood since the Lagrangian 
(2.8), taking account of Eq. (3.6) and the subsidiary con­
ditions of Eq. (2.6), numerically coincides with the 
Lagrangian of general relativity: 

(3.9) 

This last result is an indication of the consistency of 
the considerations on which our approach is based; in­
deed, we can obtain the result (3.8) in two ways. The 
first method developed in the text need not be recapitula-

3 >Further on, we shall study the relation of the tensor Fmn to the 
electromagnetic field. 

ted; the second method would be to assume the form of 
the affinity (2.11) from the very outset, obtain the 
Lagrangian (3.9), which depends only on the metric 
tensor and its derivatives, and then proceed to Eq. (3.8) 
via the familiar variation with respect to the gmn. The 
fact that our Lagrangian (2.8) actually turns out to be 
the well-known Lagrangian (3.9) of gravitational theory 
seems very important. We have shown that the usual 
Lagrangi~ is not only compatible with the Riemannian 
affinity rjk but also with the non-Riemannian affinity 
(2.11) which corresponds to a space of non-zero torsion 
describing both gravitational and electromagnetic fields. 
Thus we find that in the general theory of relativity 
there exists an arbitrariness due to which the electro­
magnetic field can be introduced and given a geometri­
cal meaning. 

To conclude this section we note that variation of the 
Lagrangian (2.8) with respect to F mn leads to the iden­
tity 0 = 0. Hence, to obtain the electromagnetic field 
equations we must introduce a free-field electromag­
netic Lagrangian whose possible form we shall consider 
below. 

4. THE BIANCHI IDENTITIES AND THE VECTOR 
POTENTIAL OF THE ELECTROMAGNETIC FIELD 

As is well-knownc41 , the curvature tensor B!kl and 
. J 

torsion tensor Ojk satisfy the Bianchi identities which 
are conditions of integrability of differential geometry. 
These identifies have the form 

(4.1) 

(4.2) 

where Ea'AIJ.ll denotes the totally antisymmetric pseudo­
tensor. If we substitute Eq. (3.6) in Eq. (4.1) we obtain 

(4.3) 

where the notation lv denotes covariant differentiation 
with respect to the Riemannian affinity rfk· Hence, the 
first Bianchi identity is imposed only on the gravita­
tional field and yields nothing new compared with the 
original Einstein theory. 

The second identity (4.2), however, is more informa­
tive and, as we shall see, will permit us to find addi­
tional conditions allowing us to connect the tensor F mn 
with the electromagnetic field tensor Emn· Since F mn 
has only 6 independent components (cf. Eq. (2.6)) the 
sought-for connection must be unique. 

The second set of Maxwell equations is 

(4.4) 

We look for a generalization of the form 

(4.5) 

where T IJ.IIC1 is a certain tensor to be constructed from 
geometrical quantities. We note that the basic geometri­
cal quantity with three indices is the torsion tensor 
0~ 11 • In order to introduce the torsion tensor somehow 
into a relation of the form (4.5) we have to lower its 
contravariant index by means of some second-rank 
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covariant tensor. Let us assume that (4.5) has the form 

(4.6) 

where a is a number which we shall determine from the 
conditions imposed by the second Bianchi identity (4.2). 
Using (4.2) we calculate the divergence of (4.6), viz., 

&a [eaP"0 {g,,1, + aFp~) Q;'a] = -ea~'"(<'l~ + F;~) R~xaa 
+(a -1) ea~'"[F~~f~~Rk,aa + Q~ag 1,P (L~a -T~a)]. (4.7) 

The right side of this equation is zero in view of (4.6). 
The first term on the right hand side of (4.7) is zero 
because of the properties of RJ.l.Kaa• and in the second 
term the factor proportional to a- 1 is zero only in the 
uninteresting case of F J.l.V = 0. Hence, the consistency 
of the assumed conditions (4.6) requires that a = 1. 

It turns out that the conditions (4.6) can be integrated 
in explicit form: We substitute Eq. (3.4) in Eq. (4.6) and, 
,after some rearrangement of terms, obtain 

ea"'"[&af'v" + 1/2P:~ (2g"g"x&ag"6 + &,g"" + &ag"'- &"g,,)] = 0. 

It is easy to see that the bracketed second term is sym­
metrical in a and J.1. and vanishes, leaving 

(4.8) 

where fJ.l.v = (FJ.l.z;- Fz;J.l.)/2, the antisymmetric part of 
F J.l.ll" 

Equation (4.8) is literally identical with Maxwell's 
equations (4.4) and has the obvious solution 

(4.9) 

where AJ.l. is an arbitrary vector which it is natural to 
relate to the electromagnetic vector potential. Since the 
electromagnetic field E J.l.V also appears in the form 
(4.9), we shall assume that the two tensors are simply 
proportional: 

(4.10) 

(e is the electron charge). The new constant Zo, with the 
dimension of length, must be determined from experi­
ment. Further on, we shall discuss the possible mean­
ing of lo and the limitations imposed by experiment on 
its magnitude. 

5. THE FREE-FIELD ELECTROMAGNETIC LAGRAN­
GIAN 

We shall study the possible form of the free-field 
electromagnetic Lagrangian .!l'F; our choice for .!l'F will 
be guided by the following consi9erations: 

(1) .!l'F must not depend on Ljk since in the contrary 

case we would have to !ake .!l'F into account under varia­
tions with respect to Ljk· Thus, we shall assume that 

.!l'F contains only the tensors F mn and gmn• but not their 
derivatives. 

(2) The expansion of .!l'F in powers of (l~/e) must 
begin with the term (e2/4l~)fJ.l.z;fJ.l.' z;'gJ.l.ll'gJ.l.'v in order 
that we obtain Maxwell's equations in first approxima­
tion. 

If to these considerations we add that of maximum 
simplicity (of form), we may, for example, choose .!l'F 
in the form: 

- e2 ~~- mn - e2 -.r--
:fp- - 4- Y g g Fmn- - 4 Y g S. 

2/o 210 

(5.1) 

It is not difficult to express the invariant s = gmnF mn in 
terms of the invariants 

(5.2) 

Following the procedures of our earlier work I, we find: 

[ s [ ( s )' ( d )'] .,, s=2 1+4+ 4 + 4 

[ s [( s )' (d)']''•]''• + 2 1 + 4- 4 + 4 -4. (5.3) 

For completeness, we also write down the symmetric 
part of the tensor F mn in terms of fmn and invariants: 

1 F ) - 1 (- 2s ) ' 2 t I "' (5 4) -2· (Fmn+ nm --4 S-_-- gmn T--- mk lng · • 
s+4 s+4 

Thus, !t'Ji' only depends on the fij and gij· Taking ac­
count of Eq. (4.9), we find the electromagnetic field 
equations in the form 

(5.5) 

Clearly, the Lagrangian .PF is essentially nonlinear 
in the invariants s and d. We shall, here, obtain its ex­
pansion to second-order terms for a flat space 
(gij = o ij). Recognizing that 

S= ~~ E-Ei'=2l~ {E2 -!f2 ) 
e2~J e2 ' 

z• z• 
d = -f e'ikt RiiEk, = 4 -f (EH), 

e e 

where E and H have their usual meaning, we have 

E'- If' l5 [(E'- lf2) 2 , •] 
:fp = 2 - 4e' 2 +(EH) + ... (5.6) 

To conclude this section, we remark again that there 
is an arbitrariness to the choice of LF and our Lagran­
gian (5.1) is notable relative to other possibilities only 
for its simplicity. Nevertheless, as will be seen below, 
the explicit form of the Lagrangian is not vital to the 
experimental study of the question of whether or not the 
electromagnetic field is related to the geometry of 
space. 

6. MOTION OF A TEST BODY. EXPERIMENTAL 
EFFECTS 

The essential consideration of our scheme appears 
in the expression for the affine-connection (2.11) which 
determines the geometry of space-time. 

The coefficients of the affine-connection determine 
the geodesic lines of the space through the usual equa­
tions: 

d 2x' ; dx; dx" 
ds2 + L;k dsds = 0· (6.1) 

The geodesic line has an important characteristic: 
parallel-transfer of a vector, from point to point, along 
a geodesic always maintains the tangency of the vector 
if it has this property at the original point. The velocity, 
in any case, is a vector tangent to the trajectory so that 
motion along a geodesic intrinsically describes inertial 
motion. 

For the case of a space with both curvature and tor-
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sion we propose to generalize the Galilean law of inertia 
to the following second basic postulate: 

In the presence of gravitational and electromagnetic 
fields only (no other fields) a neutral test body moves 
along a geodesic defined by Eq. (6.1) with the affinity 
given by Eq. (2.11). It should be understood that our 
term "neutral body" means a body without charge or 
any other electromagnetic properties such as electric­
or magnetic dipJle moment, etc. Let us also note that 
in our case the geodesic is not, generally speaking, the 
shortest line. 

The foregoing statement permits us to estimate the 
limits placed on the length lo by astronomical data. In­
deed, for motion in the neighborhood of the Sun, there 
will appear corrections to the consequences of the gen­
eral theory of relativity, due to the electric and magnetic 
fields of the Sun. At the present time there are data ac­
cording to which the Sun possesses a dipole magnetic 
field whose intensity, at the Sun's surface, is of the 
order of H R> 1 arsJ. 

Let us examine, first, the effect of the perihelion 
precession of Mercury. The order of the effect is given 
in general relativity by the ratio (r /R) R:: 4 x 10-8 , where 
r denotes the Schwarzschild radius of the Sun and R the 
distance between the Sun and Mercury. The order of ac­
curacy of agreement between theory and experiment 
is 0.5%rsJ. Hence, we must consider that the smallness 
parameter ~ , which appears upon taking into account the 
effect of the Sun's magnetic field on the motion of 
Mercury, is limited by the condition~ ::; 10-10• This 
parameter equals 

£= l~ H' = l~ n(Re)". (6.2) 
e e R 

where R0 is the radius of the Sun and H' its magnetic 
field calculated at the position of Mercury. Inserting the 
appropriate numbers we find 

lo;;;;; 10-7 em (6.3) 

A somewhat better estimate is obtained from the 
effect of bending of light rays in the field of the Sun. 
Here, the order of experimental accuracy is comparable 
with the effect itself, but the magnetic field intensity is 
greater. The smallness parameter in this case is limi­
ted bye ;::; 10-6 , and for lowe find 

1o;:;;;;10-•cm (6.4) 

Equations (6.1), obviously, will give the effects due 
to the presence of even an electromagnetic field alone. 
In a flat space and using Cartesian coordinates we find 4> 

as the first term in the expansion in powers of (l~/e) 
a•x' l~ iJE;: dxj dxk 
ds' + e oxk TsTs = 0· (6·5) 

Let us examine the limiting nonrelativistic case where 
we can neglect the space-like part of the velocity 
4-vector (i.e., dx/ds = 0, dx0/ds "'- 0). Then the time­
like component of (6.5) gives 

xo = ks +r, 

where k and r are constants and the space-like part 

4 >1n Eqs. (6.5) and (6.6) we arbitrarily use the plus sign, keeping in 
mind that it could also be minus. 

gives (taking x0 = ct) 
dhc l02 DE 
-=c--. 
dt2 e ot (6.6) 

Let us remark two important corollaries of Eq. (6.6): 
In the first place, the force 

F= me lo28E 
e ol 

which acts on a neutral body is universal in the sense 
that it is proportional to the mass just as for the gravi­
tational force. In the second place, Eq. (6.6) is not in­
variant with respect to reversal of the time T. (It is 
scarcely necessary to remark that this is due to the 
presence of a first time derivative, since the accelera­
tion and electric field are unaffected by the operation). 
Hence, if experiment convinces us of the correctness of 
(6.6), then we shall have proved both the geometrical 
nature of the electromagnetic field and the connection 
between the geometrization of electromagnetism and 
violation of T-invariance5 > (and CP-invariance). In the 
Appendix we shall discuss an idealized experimental 
scheme for testing (6.6). 

In our earlier workra,?J we have already discussed 
the connection between geometrization of the electro­
magnetic field and violation of T- and CP-invariance. 
Under certain additional assumptions this connection 
leads to a weak-electromagnetic variant of the violation 
of CP-invariance. In this case, agreement with experi­
ments on neutral K-meson decay requires that the quan­
tity lo have a magnitude of order: 

lo ~ 10-17 - 1Q-1s em (6.7) 

As is evident from the preceding text, such a value does 
not contradict existing data. If experiments discussed 
elsewherer7 ' 8 J confirm a weak-electromagnetic variant 
of the violation of CP-invariance this will be an indica­
tion, albeit indirect, of the correctness of our proposed 
theory. 

There is another possible indirect test of our theory, 
viz., searching for nonlinear effects in the free-electro­
magnetic field Lagrangian (cf. Eq. (5.6)). The effects 
which might result from such ;;t nonlinearity are dis­
cussed inr9J, and lead to the conclusion that existing 
data limit Zo to 

Thus, the theory here proposed, leads to a number of 
experimental consequences which will permit a decision 
as to its validity. 

The author wishes to express sincere thanks to A. T. 
Filippov and 0. A. Khrustalev for many fruitful discus­
sions. 

APPENDIX 

Here, in a schematic way, we shall estimate what 
order of magnitude for lo might be arrived at in a 
laboratory experiment aimed at the search for the uni­
versal force implied by the equation 

5 >The possibility of violation ofT -invariance in a unified field theory 
was already noted by Einstein (cf. PI, p. 176). 
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r1hc lo2 liE -=c--. 
dt2 e ot (A.1) 

Let us imagine the following ideal experimental 
scheme: A mechanical system (e.g., a torsion pendulum) 
with natural frequency w and a small damping constant 
y is placed within an electrical system which can pump 
energy into the pendulum via the sought-for (universal) 
force, related to an appropriate (time-) varying electric 
field. For example, both arms of the torsion pendulum, 
let us say, composed of a neutral dielectric, can be 
placed between capacitor plates; the field therein must 
be highly uniform in order to exclude the effects of the 
force acting on the dipole-moment induced by polariza­
tion. Let the field between the plates be given by 

E = E0 sin oot. 

where w is the same as above. Then, according to our 
discussion, the force will be 

lo2 
F = mc-ooE0 cos oot = F0 cos wt. 

e 

At resonance the (mechanical) amplitude is given by 

x = .!i_ = clo• Eo, 
mwy ey 

(A.2) 

whence 

lo• = _!!1 x = 1.6·1tr•• XV 
cEo Eo 

(A.3) 

with Eo in esu. We emphasize that in Eq. (A.2) the 
(sought-for) universality is evidenced by the absence of 
dependence on the mass and the violation of T-invariance 
by the absence of dependence on the frequency, all other 
things being equal. 

To get an impression of the order of magnitude of 
the quantities involved, let us assume the following 
values for the experimental parameters: let the equili-

brium time be of the order of a day, i.e., y of the order 
y R; 10-4 sec-\ the accuracy of measurement of the am­
plitude x of the order x ~ 10-4 em, and E0 R; 103 esu. 
Then, absence of the effect implies 

1 zo~4·1()-t•·cm 

This estimate is considerably better than those obtained 
otherwise in the text, prior to Eq. (6.7), and is not far 
from the value suggested by that equation. 
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