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Instability of solutions of the nonlinear periodic wave type is considered in the presence of a pertur­
bation which may be due to an inhomogeneity or to nonstationarity of the medium. The model of ion 
sound and the Korteweg-de Vries equation are investigated as examples. It is shown that an instabil­
ity of the stochastic type exists for periodic waves sufficiently "close" to a solitary wave. This 
instability signifies time mixing of the wave phase and quasi-random variation of the wave velocity, 
which in real problems leads to overturning. The time during which wave overturning occurs is 
estimated for the ion-sound model. 

INTRODUCTION 

A characteristic feature of nonlinear media with dis­
persion is the existence of exact solutions describing 
nonlinear periodic waves. An analysis of the stability 
of such waves is connected with certain technical diffi­
culties, and the first results in this direction were ob­
tained only recently (see, for example[l-sJ ). 

The most general and best developed method of in­
vestigating the evolution of nonlinear periodic waves, 
based on the use of the Lagrangian formalism and a 
certain averaging operation, was proposed by Whit­
ham(4J. 

We propose below another approach for the investi­
gation of the stability of nonlinear waves, based on an 
essentially nonlinear analysis of the influence of small 
but finite perturbations. It will be shown that under 
definite conditions, the phase of the nonlinear wave 
begins to "become muddled" under the influence of the 
perturbation, and the law governing its time variation 
has a nearly random character. This circumstance 
leads to turbulization of the wave, the end result of 
which is overturning and a transition to a multistream 
motion. 

Although the method developed below for the inves­
tigation of stability is applicable to arbitrary nonlinear 
periodic waves, we shall nonetheless use for conven­
ience the concrete model of ion sound[sJ, and also the 
Korteweg-de Vries equation, which describes nonlinear 
steady-state waves for a large class of physical prob­
lems. 

Iil Sec. 1 we present the fundamental equation, de­
rive a number of relations necessary for the subse­
quent analysis, and formulate concretely the stability 
problem. In Sec. 2 we introduce an instability criterion 
leading to randomization of the phase of the nonlinear 
wave. In Sec. 3 we consider the process of diffusion of 
the wave parameters and estimate the time during 
which the overturning takes place. We also present 
there a more detailed physical analysis of the obtained 
instability. 

1. FORMULATION OF PROBLEM 

One-dimensional motion of a plasma with "cold" 
ions is described by the system 

572 

av =-~alP_ v.av 
at M ox ox' 

on {} 
at=- ox (nV), 

~= -4ne(n-n e~IT) 
8x2 e ' 

(1.1) 

where ne is the electron density, which in a nonsta­
tionary inhomogeneous medium is generally speaking 
a certain function of the time and of the coordinate. We 
write 

n. = n0 + ent(x, t), (1.2) 

where n0 = const, and the dependence on (x, t) is re­
presented in the form of the perturbation n1 , while E 

is a dimensionless small parameter. 
Let us dwell on certain properties of the unperturbed 

system (1.1) when E = 0. In this case we can construct 
a solution that depends only on the variable 

6= (1/rd)(x-Ut), 

where rd is the Debye radius and U is an arbitrary 
parameter. The system (1.1) reduces to a single inte­
grable equation 

v'2(u- v) 2 = u2 (1- v /u) + exp {uv- v2 /2}- (1 + u•)- 2C; 

v 
v ===-, 

c 

u 
u == --;;' 

dv 
v'=-- ar;' 

where C is the integration constant. 

,;1 c=v M' (1.3) 

The equation of motion (1.3) is best analyzed on the 
phase plane ( v', v ), and we present two families of 
curves. The first (Fig. 1) represents phase trajector­
ies at different values of the parameter C, which has 
the meaning of the Hamiltonian. Closed trajectories, 

n 

0=0 

,n 

FIG. 1. 
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describing steady-state nonlinear oscillations, corre­
spond to C > 0. The separatrix ( C = 0) describes a 
solitary wave (soliton), and when C < 0 the motion is 
not finite. The second family (Fig. 2) of phase trajec­
tories pertains to a fixed C > 0, but to different values 
of the wave velocity u. With increasing u, the angles 
on the phase curve become more acute, and at a criti­
cal value uc"" 1.6 the overturning takes place. Multi­
stream motion then sets in, and for its description it 
is necessary already to alter the initial system (1.1 ). 

To avoid too cumbersome and inconvenient calcula­
tions, we simplify the system (1.1 ), assuming all quan­
tities to be sufficiently small but finite. This approxi­
mation corresponds to a low wave velocity u, differing 
little from unity: 

a"""u-1~1 (a>O), (1.4) 

and the system (1.1) reduces to the Korteweg-de Vries 
equation with a right-hand side 

av {}v av {}3v 
-+-+v-+-=eF(y -r), 
a..: ay ay ay3 

C~a'l. 

In this case 

max v ::::::; 3a, min v ::::::; ¥2C I a 

and from (1.6) we get for the unperturbed wave 

v::::::; 3acn2 [ y;a( 1 + V i~a3)s:x] + 0 (Y, ~a), 
x::::::; 1- f2C/9a3 

and, in addition, the wave number 
n -( 4 )-1 2n 

k = 4l'3a In (8C/9a3) ''• ""'T, 

where L is the period of the oscillations (1.8 ). 

(1.7) 

(1.8) 

(1.9) 

Let us consider now a variational principle for (1.5) 
in the absence of perturbation ( E: = 0 ). Expanding the 
unperturbed solution v in a Fourier series 

.. .. 
] aneiAnve-inO = ] Vn(-r) eiknv, (1.10) 

F(y,-r)::::=; __ 1_(Unt +v®t), 
2no {},; ay 

y = xI rd, -r = ct I rd. 

we get the Hamiltonian[e] in the phase space of the 
(1. 5) harmonics ( vn ) 

Equation (1.3) goes over into 

(1.6) 

We note that the points Q on Figs. 1 and 2 correspond 
to the following relation between parameters 

ao = (3I,J:o)'1•, 

at which the periodic solution of the unperturbed mo­
tion (1.5) collapses. 

We shall now investigate Eq. (1.5) under the as­
sumption that it is exact. As will be shown subse­
quently, the obtained analysis is perfectly adequate to 
draw conclusions concerning the stability of the system 
(1.1 ), and the refinements necessitated by the fact that 
(1.5) has nevertheless a limited region of applicability 
will be made in the appropriate place. 

We should expect intuitively (as will be justified 
later) that the strongest influence of the perturbation 
F(y, r) will occur near the separatrix, i.e., on the 
unperturbed steady-state oscillations, which are 
"close" to the soliton and have consequently a very 
long period. Such a limit corresponds to the inequality 

v' 

FIG. 2. 

and the canonical equations of motion 
dvn ikn aH dv-n = _ ikn aH (1.12 ) 
d; = 2; av-_n' d-r 2n UVn 

We obtain a functional relation between the Hamiltonian 
H in ( vn) space and the Hamiltonian C in ( v, v' ) 
space. From (1.6) and (1.11) we get 

L/2 

H=C+kl-_!_ku S v2<G)t.!S, 
2n -L/2 

L/2 

- 1 s C=y Cdy, 
-L/2 

L/2 2 L/2 2 

1=..!_ S (uv)dv=~ ~ (av(s))ds 
21l -L/2 {}y 2Jt -L/2 {}S 

= J._ ~ v'(C, v)dv. 
2n 

(1.13) 

Here I has the meaning of the· action in the phase 
(v, v') space, and C coincides with C in the unper­
turbed problem. 

We now formulate the investigated problem in ( Vn ) 
space. We assume that the unperturbed motion is a 
nonlinear steady-state oscillation (1.8) with a fixed 
period L (or wave number k ). This determines the 
integral of motion H = H( k) and the next equations of 
motion, equivalent to (1.5) when E: = 0: 

dH dt} 
-=0, -=ro(H)=ku(H). (1.14) 

d-r d-r 

The second equation determines the phase "• and rela­
tion (1.13) for a specified k establishes a unique con­
nection between H and u, i.e., between the Hamiltonian 
and the frequency w. 
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At sufficiently small perturbations of the system 
(1.4 ), it is possible to construct an approximate inte­
gral of motion, which represents the unperturbed 
Hamiltonian H plus a correction of order E. However, 
as will be shown in the next section, at sufficiently 
large E the phases begin to vary in a quasi-stochastic 
manner with time under the influence of the perturba­
tion, and this leads to a Brownian motion of the quan­
tity H. Thus, the type of instability considered by us 
is a stochastic disintegration of the integral of motion, 
and the growth of H in the course of time is similar to 
the acceleration of a Brownian particle. 

2. CRITERION OF STOCHASTIC INSTABILITY 

We expand Eq. (15) in a Fourier integral with re­
spect to y: 

dvq . . 1 . r d eF d; + tqVq + (tq)3vq + 2 tq J q1 Vq,Vq-q, = q, 

1 r . • 
Vq(<) = ;-- .\ e->qy v(,;, y)dy, V-q = Vq , 

ln · 

Fq(<)=_!_ r e-iqYF(,;,y)dy, F-q=Fq'. (2.1) 
2n J 

We now assume that H is defined as before by relation 
(1.11 ), but now the velocity v in this equation is the 
solution of the perturbed problem (1.5). In this case 
we get from (1.11) and (2.1), in analogy with (1.12), 

dH = s dq t:.JH !v9 + 8H·~) 
d..: OVq d,; OV-q d-r 

=e ~ ~ (~~q Fq+ ~: F-q). (2.2) 

If we use in the right side of (2.2) the zeroth approxi­
mation for vq in accordance with (1.10 ), we get 

dH = ~ L; _!_( dv-n Fn _ dvn F-n) 
dt ik " n d,; d,; 

= eu ~ (v-nFn + VnF-n). (2.3) 

The terms written out in formula (1.5) for F( T, y ), 
may turn out to be, generally speaking, of different 
orders of magnitude, depending on the values of the 
derivatives of the perturbation n1 with respect to x 
and t. It is convenient to start the investigation with 
the case when the term containing the derivative with 
respect to x is small and can be neglected. 

We consider now the simplest case of the time de­
pendence of the perturbation 

Substituting Fn in the equation for Vn from (1.10) in 
(2.3), we get 

dH = -eu ""' [an«D:.nei(nil-vt) + IZ-n«l>ne-i(nil-vt)j. (2 .4) * ~ . 
We obtain the equation for J. in the following manner: 
we retain the functional relation (1.13) for the per­
turbed quantities. In view of the uniqueness of the 
connection between w and H, we can write 

(2.5) 

where H is now the function of the time in accordance 
with (2.4). A justification and an estimate of the accu­
racy of the approximation (2.5) will be given in Sec. 3. 

The obtained system (2 .4) and (2. 5) is analogous to the 
problem investigated in [71, and we shall henceforth use 
the same reasoning in what follows. It is simplest to 
interpret the system (2.4) and (2.5) as the motion of a 
nonlinear oscillator with frequency w(H) and energy 
H under the influence of an external force. 

Let now the following resonance condition be satis­
fied for a certain value H = Hm 

mro(Hm) =v. (2 .6) 

The next nearest resonance is determined by the condi­
tion 

(m + 1)oo(Hm+i) = v. 

Thus, when m >> 1, the distance between the nearest 
resonant frequencies is 

Q=oo(Hm) -(J)(Hm+t) ~v/m2 =w2 /v. (2.7) 

If condition (2.6) is satisfied, we can retain in the right 
side of (2.4) only the resonant term, and we can esti­
mate the maximum change of energy 6f:l as the result 
of the resonance. In view of the nonlinearity, the fre­
quency w (H) is changed thereby by an amount 

6oo ~ -~<:) 6H. (2 .8) 

We now introduce the parameter 

K= (6w/Q)2 (2.9) 

characterizing the ratio of the resonance width Ow to 
the distance between resonances 0. As shown in[a,oJ, 
when K >> 1 and the resonances overlap, the oscilla­
tor motion becomes of the intermixing type, and the 
phase J. becomes a random function of time. The 
phase correlation is split: 

2n S eiil(<'+<l e-iil(<'l dtl>(<') ~ e-<1<, 

0 

after a time T c equal to[7 J 

" 1 't'e=---. 
(J)2 InK 

(2.10) 

To the contrary, when K << 1, the motion is stable 
in the sense defined at the end of Sec. 1. The value 
K ~ 1 can be regarded of the boundary of the transi­
tion from the stable motion to the stochastic instability. 

Let us estimate the parameter K. From (2.4) we 
get 

whence 

{)H ~ ( earo«<>mam )'I• 
vdro/dH · 

(2.11) 

The amplitude am can be found by using the expansion 

sn2z- {. :n: ~2 ~ [ qn 
- kK(n/2, x) \j n~i (1- qnp 

nqn nnz J 
----COS·--:::-,...--:':--

1-q2n K(n/2,x) ' 

= ex { _ :n:K (n;/2, i~} 
q p K(n/2,x) ' 

(2 .12) 

where K (7T/2, K) is a complete elliptic integral of the 
first kind and K is its modulus. Substituting the 
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written-out expression in (1.8) and using the expansion 
near the separatrix (i.e., the fact that 1 - K « 1), we 
get 

a,.-a/N, N=K(:t/2,-x). (2.13) 

N determines here the characteristic number of har­
monics in the spectrum. An estimate of the value of 
dw/ dH is more complicated. We note by way of intro­
duction that at a fixed value of k the Hamiltonian C in 
( v, v' ) space is uniquely connected with u by relation 
(1.9). From (1.3) we have 

dH 1 •dn 1 de a1 ae a1 
-=--=~-_j__,, __ _ 
dro k du k da ae da oa 

1 L/Z U(O de{) L/2 

-- ) V2(s)ds-- -+--=-) s v2 (s)d£. (2.14) 
2:t -LIZ 2:t oa iJa fir -L/2 

Taking into consideration the relation 

aetoi= -k 

and using (1.8) and (1.9), we can obtain from (1.14), 
accurate to terms of higher order of smallness, 

(2 .15) 

Combining (2.9), (2.7), (2.8), (2.11), (2.13), and (2.15), 
we arrive at the following condition for the decay of the 
integral of motion 

(2 .16) 

Postponing a detailed analysis of the criterion (2.16) 
and of the ensuing consequences to the next section, we 
call attention here only to the fact that when E - 0 and 
the other parameters in (2.16) are fixed, the criterion 
is no longer satisfied and stability is obtained, at least 
for a sufficiently long time. The resultant correction 
to the unperturbed Hamiltonian H can be readily de­
termined. Indeed, from (2 .4 ), in the presence of a 
single resonance at the harmonic numbered n, we have: 

dH f d-r: = 1jl(H) cos (ni}- vt), 

1jl(H) = 2su(H)an(H)<Dn(H), 

where the phases of the amplitude an and ~n have been 
omitted for simplicity. From this, with (2 .5) taken into 
account, we have the exact integral 

f nro(H)-v 
J dH H = sin (ni}- V't) + const. 

11'( ) 

Expanding w(H) near the resonance at H = Hn, we 
have 

nd:v:) (H -Hn) 2 = 2¢(Hn)sin(n'l}- v-r:)+ const 

The obtained expression shows that as a result of the 
resonance a weak modulation appears on the nonlinear 
wave (compare the obtained formula with (2.11 )). 

To the contrary, at all arbitrarily small E, there 
always exists the decay of the integral of motion, pro­
vided k is sufficiently small, i.e., the unperturbed 
periodic wave is sufficiently "close" to the separatrix 
(solitary wave). The latter circumstance, however, 
calls for a refinement, which will also be discussed in 
Sec. 3. 

In the course of the derivation of the criterion (2.16), 
we have made the following three simplifications: 1) in 

lieu of the initial (1.1) we consider the approximation 
(1.4), when the Mach number differs little from unity; 
2) only the first term in the perturbation of F( r, y) was 
considered; 3) the perturbation F( r, y) contained only 
one harmonic with respect to the time r. 

The first simplification denotes that the investigation 
of the stability is carried out sufficiently far from the 
values of the parameters at which the overturning of 
the wave takes place. In this case a is the only parame­
ter that varies substantially from a value much smaller 
than unity to a value ac Rl 0.6. The latter means that 
the inequality (2.16) can be retained for a very rough 
estimate near the overturning regime. 

Allowance for the second term in F( r, y) does not 
lead to any fundamental changes; to save space, it will 
not be considered here. 

Let us stop to discuss in greater detail the third 
simplification. It is obvious that for an effective de­
velopment of the stochastic instability it is necessary 
that the right side of (2 .4) contain a sufficiently large 
number of terms, which may turn out to be resonant 
at definite instants of time, owing to changes of H. In 
the case considered above, this means that a perturba­
tion containing only one harmonic with respect to time 
should have many harmonics with respect to the coordi­
nate. We can consider also another limiting case, when 
the perturbation has only one harmonic with respect to 
the coordinate: 

Fn(-r:) = Fn,(-r:)bnn.,•. 

expanding Fn0 ( r) in a Fourier time series, we obtain 
in lieu of (2 .4) 

(2 .17) 

In this case, a large number of resonant terms in the 
right side can be ensured by a sufficiently broad tem­
poral spectrum of the perturbation. The case (2 .17) 
can be analyzed in analogy with the preceding case, the 
distances between resonances now being 

C=v/no (2.18) 

and the overlap condition (2 .9) can always be satisfied 
at sufficiently small v. 

3. EVOLUTION OF NONLINEAR PERIODIC WAVE 

As already noted, the system (2.4) can be interpre­
ted as the motion of a nonlinear oscillator with energy 
H and frequency w(H). When the criterion (2.16) is 
satisfied, the phase of such an equivalent oscillator 
becomes randomized within a time (2.10), and the en­
tire motion can be regarded as random wandering. 
The average value of H increases, and with it also w 
and u. Thus, the resultant Brownian motion causes the 
solution of (1.5) to be given by an expression that coin­
cides functionally with a nonlinear wave in which the 
velocity u is a random function of the time. As follows 
from (2.16), the criterion becomes worse with increas­
ing u, and the region of stochastic motion is bounded 
on the phase plane by a certain maximum umax. at 
which (2.16) is no longer satisfied. If it now turns out 
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that umax > uc, this means that the considered insta­
bility leads, in final analysis, to an overturning of the 
wave. 

Another limitation on the growth of u may be con­
nected with the fact that when v $ = ku the resonances 
(2.4) are impossible. Finally, the third limitation is 
connected with the width of the spectrum with respect 
to the coordinate of the perturbation F( T, y ), since 
there are no resonances outside the region of the non­
zero harmonics Fn( T). 

We now assume for simplicity that none of these 
limitations hold, and describe with the aid of the 
kinetic equation the evolution of the wave instability in 
analogy with the description in£7 1. 

We note first that the right side in (2.4) is propor­
tional roughly speaking to v( T, y ). According to (1.8 ), 
v( T, y) is a sequence of very narrow pulses which 
differ greatly from zero in the interval T ~ 1 
( t ~ rdf c) and which follow each other periodically 
with a frequency w = ku « 1. Each resonance acts on 
the equivalent oscillator as a jolt (collision) with inter­
val between the jolts 

(3.1) 

This information is sufficient to write down the Fokker­
Planck equation for the distribution function f(H): 

of= _ _!__ [(!:o.H)t] +_!_~[ ((M)2) J (3.2) 
o,; an /:o.,; 2 aiF f:..'f f , 

where the angle brackets denote averaging over the 
random phase J. Let us calculate ( AH) and ((AH)2 ). 

Taking into account the remarks made above, we get 
from (2.1) and (2.5), by integrating over the small time 
interval T ~ 1 in the vicinity of the jolt (resonance): 

(3.3) 

Analogously, we get from (2.4) and (3.3) 
/:o.H ~ 2euja,.a>,.j cos (nt}- vt +'to) +2e2uj«ll,. j2cos2vt + O(e3 ), 

(3.4) 
where -'o is the phase of the quantity (an <~>-n ). From 
(3.4) we obtain the necessary expressions for the mo­
ments, taking (2.13) into account 

(f:..H) ~ 2e2uja>j 2cos2vt + O(e'), 

((All)2) ~ 2e2u2j«llj2jav,.,j2 ~ 2e2k•u•ajU>j2. (3.5) 

Substitution of (3.5) and (3.1) in (3.2} and the change of 
variables 

du 1 dro f(u) 
j(H) = /(u)-=-f(u)- = --

dH k dH kul'a 

yields ultimately 

of(u) cos•vt a ( u,z ) 
--= -2e2kl«lll 2--- -=f(u) 

d,; v au l'u-1 

+e2~j«llj•~[ . 1 ~(ua-yu-1/(u))]. 
v au u fu - 1 au . 

(3.6} 

From (3.6) follows an estimate for the characteristic 
diffusion time: 

f e2kl u• 
-;;; ~ -v-ja>jl (6u)2' 

where Au is the characteristic change of the wave 
velocity during the diffusion time. Since uc is also of 
the order of unity in the case of overturning, the time 
T during which the instability in question leads to the 

formation of a multistream motion is 

(3.7) 

We proceed now to investigate the evolution of the 
spectrum of a nonlinear periodic wave under the influ­
ence of a perturbation. Under the influence of the reso­
nances, the amplitudes on the harmonics change, and 
as the result of the nonlinearity of the problem a 
change takes place, generally speaking, in the frequen­
cies of all the harmonics wn = nw. So far we have 
taken this change into account by putting 

&ron= n&ro. (3.8} 

This meant that the resultant corrections to the fre­
quencies did not change the dispersion law and no ac­
count was taken of the additional spreading of the 
packet (1.8) as the result of this change. 

We now present more accurate estimates. We con­
sider the unperturbed equation (2.1): 

dv,. r f ~ 1 -=-ink (1-l£1ln2)v,.+- ~ v,.,v,.,l, 
d,; " 2 j 

n 1+n2"""'n 

or after substituting 

we get 
ro,.a,. = nk r (1- k2n2)a,. + ~ ~ an, a,.,]. 

,_ 2 n 1+n1=n 

From the foregoing expression we obtain 

Own kn an-m (3 9} -0-= --[a+(kn) 2)1lnm+kn--, • 
am an an 

or for any n ;o< m and n, m < N 

oro,. = kn a,._,. ~ kn. (3.9') 
Oam an 

On the other hand, according to (2.13), (2.15), and 
(1.11) we previously had 

oro,. oro dro oH dro 
--=n-=n---~n-uam~kn 
oam oam dH oam dH ' 

which coincides with (3.9'). The agreement demon­
strates that the perturbed motion of the wave can ac­
tually be regarded as the motion of a nonlinear oscil­
lator with energy H and phase J. The fact that the 
phase of the oscillation becomes randomized means 
that all the harmonics of the packet (more accurately, 
the harmonics of the fundamental part of the spectrum 
with numbers from zero to N) have random phases 
that are not correlated with one another. 

The process of stochastic decay of a nonlinear wave 
can proceed also in a different manner in the case 
(2.17), when the external perturbation has many tem­
poral harmonics. It becomes possible to separate two 
limiting cases. The first is analogous to that consid­
ered and correspond to the conditions when only one or 
several temporal harmonics of the perturbation contri­
bute to the resonances. The second case corresponds 
to the following mechanism: Each harmonic of the 
wave turns out to be in resonant interaction with a 
large number of temporal harmonics of the perturba­
tion. In this case the change of the frequency of the 
harmonic is determined with the aid of (3.9} with 
n = m, as the distance between resonances is given by 
(2.18). Each harmonic executes Brownian motion inde­
pendently of the others, and the number of degrees of 
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freedom in the problem becomes very large. Such a 
mechanism calls for a special analysis, and will not be 
discussed here. 

In conclusion we note that when k - 0 and at a 
specified number of harmonics m 0 of the perturbation 
F, the third limitation begins to exert a strong influ­
ence (see the start of this section) on the evolution of 
the wave. The relative number of resonance harmonics 
mo/N - 0 (since N - oo when k - 0 ), and a different 
approach must be used to investigate the stability of a 
solitary wave. 

We are grateful toM. A. Leontovich and B. B. 
Kadomtsev for useful discussions. 
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