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The dielectric tensor of a magnetoactive relativistic plasma is calculated for the high frequencies that 
are of interest from the viewpoint of relativistic electron synchrotron radiation. The polarization of 
the normal waves is determined. In contrast to the case of a nonrelativistic plasma the polarization 
is found to be linear in the case of a monoenergetic distribution. For a power-law energy distribution, 
the polarization may be arbitrary and, in particular, circular. It is pointed out that the latter circum­
stance should be taken into account in interpreting radioastronomy observation. 

THE change of the parameters of radiation during its 
transfer is determined by the dielectric tensor of the 
medium. In this article we calculate the dielectric ten­
sor of a relativistic electronic magnetoactive plasma. 
The obtained expressions make it possible to consider 
the problem of polarization of normal waves and the 
transfer of synchrotron radiation of relativistic elec­
trons in the case when the properties of the medium in 
which the radiation propagates are governed by the rel­
ativistic electrons themselves, and the nonrelativistic 
("cold") plasma is nonexistent or its density is suffi­
ciently small. 

The dielectric tensor will be calculated by the 
kinetic-equation method. We note in this connection 
that in the investigation of the transfer of synchrotron 
radiation by the method of Einstein coefficients it is 
necessary to know beforehand the polarization in the 
normal wave. This requirement is connected with the 
fact that in the Einstein-coefficient method one uses 
wave intensities, i.e., quantities quadratic in the field, 
but not the field themselves. Therefore the use of the 
indicated method is possible if the polarization of the 
normal waves for which the absorption coefficients are 
calculated is known (for details see, for example lll). 

The polarization, however, depends in turn on the ab­
sorption coefficients. It is clear therefore that to solve 
the problem it is necessary to go outside the framework 
of the Einstein-coefficient method and to find the polari­
zation of the normal waves in an independent manner, 
say by the kinetic-equation method. If we do not resort 
to the Einstein-coefficient method and use the transport 
equation for the radiation polarization tensor, then the 
polarization characteristics of the radiation are taken 
into account automatically. 

1. As already noted, the radiation transfer is deter­
mined by the dielectric tensor 

ei;(ro, k) = 6i; + 4mti;(ro, k), 

where Kij is the dielectric susceptibility tensor. When 
the conditions 

i, j = 1, 2, 3, 

are satisfied, the electric field in the high-frequency 
electromagnetic wave propagating in a magnetoactive 

(1) 
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plasma can be regarded as transverse. We introduce 
a right-hand system of axes 1-2-3, directing the 3 axis 
along the wave vector k and the 2 axis parallel to the 
projection of the magnetic field H on the plane perpen­
dicular to k. 

In this system, the equation for the Fourier compo­
nent of the electric field of the wave 

a,~= 1, 2, (2) 

and the transport equation for the radiation polarization 
tensor Io:[3 is: 

(~ + c~~) I a~= cPa~+ i2nro [xaall~, -llao-X~<']Ia,, (3} at k ar 

where P o:[3 is the tensor of the volume power of the 
spontaneous radiation. Definitions of Io:[3 and P o:p and 
a derivation of Eqs. (2) and (3) can be found in l 2 . 

The Greek indices o:, [3, a, and T denote the axes 1 
and 2 in the plane perpendicular to the wave vector k. 
The substitution Ko:[3 - a6o:[3 + Ko:f3, where a is real and 
lal « 1, does not change Eq. (3). It is therefore conven­
ient to assume that the sum of the diagonal elements of 
the tensor Ko:[3 is a pure imaginary quantity, and the real 
part of Sp Ka[3 defines the quantity E (see l2l): 

e = 1 +4nRe 1/2 Spxa~ = 1- (roo/ ro)2, (4) 

Here wo is the plasma frequency of the medium. 
To analyze Eqs. (2) and (3) (see Sees. 3 and 4 below), 

it is necessary to calculate the tensor Ka[3 (Sees. 1 and 2). 
General formulas for Ka[3 can be readily obtained by 
solving the self-consistent system consisting of the lin­
earized kinetic equation and Maxwell's equations. For a 
magnetoactive plasma, such a procedure yields, for ex­
ample for K12 (see l3l): 

. e2 ~ v E ~ . +~ ln'(x)ln(x) 
x12= -2:rn- ~ dpp2=--~ desm.28 ~ · · 

ro ffiH mc2 n- q -ill 
0 0 n=-oo 

X [ Np'(sinqJCose-: cosq:sin8) 

Ne' ( n kv ( n ))] + p -;---;;;-- -;cos <Jl cose +sin q: sine . (5) 

Here p, v, and E are the momentum, velocity, and total 
energy of the electron, 8 is the angle between p and H, 
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cp is the angle between k and H, 

kvE .. roE( kv ) x==---osmq>sm8, q==---o 1--cos<pcos8, 
ooH me ooH me oo 

WH = I e I H/mc is the gyrofrequency of the nonrelativ­
istic electrons, Jn is the Bessel function, and N(p, (}) is 
the electron distribution function. 

In the calculation11 of KG'(3 we confine ourselves to the 
region of sufficiently high frequencies, when 

(6a} 

and in addition we assume that the following inequalities 
hold 

(6c} 

Assuming that the conditions (6} are satisfied, we 
sum in (5} over n and integrate over d(} for the isotropic 
function21 N(p, e)= N(p}. As a result we obtain K~{>-that 
part of the component K1a which is due to the interaction 
between the radiation and the relativistic electrons: 

(r) (r) -i e2mc4 ;;;H cos <p 
X12 = -x21 = ------<---· 

2 oo' oo 

X~ dE-f._[ N(E) ]E(2ln~-ft2 (z)), (7a) 
aE E' TJ 

2 2z \~ { v'} +-+i- dvexp ivz+i- -2ln(2sinq;), 
3 3 . 3 

(7b) 
0 

where 
( oo E )"' ( 3 oo )"' 

z = TJ' ;;;11 sin q; mc2 """ 2~ ' 
3sinq>- mc2 

CiJc = -2- CiJ11 E' lJ-'. 

The frequency we has been introduced in connection with 
the fact that the intensity of the synchrotron radiation of 
the electron with energy E has a maximum at a frequency 
w ~we, i.e., when z ~ 1; N(E} is the energy distribution 
function of the relativistic electrons and is connected 
with N(p} by 

4nN(p)p2dp = N(E)dE, E=cp. (8} 

With increasing 1f; = (}- cp (the angle between the di­
rection of radiation and the electron momentum), the 
contribution of the electrons to the antihermitian part 
of KU'l decreases rapidly like exp [- 1¢/771 3), and the 
contribution to the Hermitian part decreases in accord­
ance with the power law ~ 1/ I¢ I when I¢ I » 17, leading 
to the appearance of a term containing ln(1/77) in Im K~f>. 

For the components K<r >22, analogous calculations · u, 
yield 

1lThe anti-Hermitian part of the tensor Kcx(3 was calculated in [2 ] 

subject to the conditions ( 6). It is impossible to use the dispersion re­
lations to reconstruct the Hermitian part from the anti-Hermitian part, 
since the anti-Hermitian part is known only in the frequency region ( 6a). 

2lThese calculations are performed in the Appendix, where the case 
N' (} * 0 is also discussed. 

(r) 1 e2m2c• ( r";;11 sin q; )2 i dE iJ [ N (E) ) -• ( 
Xi1,22 = -4~ --oo- J iJE ----w- 1J /11,2:1 z), 

,~oo d 3 1 O"oo 
f 11• 2z(z) = ~ t~exr{ivz + i+} + z•( 1 ± 2 ) 5oo dv·v (9a) 

xexp{ivz+i ~' }±z2 f dv·vcos{vz+ v; }. (9b} 
0 

Th t . H ·t· t f {rl(I <rl R <rl ) d e an 1- erm1 1an par o KG'{3 m K11 , 2a, e K12,21 e-
scribes reabsorption (stimulated emission and absorp­
tion) of the radiation by the relativistic electrons. We 
can verify that the anti-Hermitian part is expressed in 
terms of the Macdonald functions :Jt 1/3• :Jt 2/3• :Jt s;3 of the 
argument w/wc and coincides with the corresponding 
expressions obtained in [2J by a somewhat different 
method. The Hermitian part of K~S(Re K~f/a2, ImK~~/21 ) 
corresponds to the role played by the relativistic elec­
trons in a magnetic field as a transparent anisotropic 
medium. 

2. We shall use formulas (7) and (9) to derive expres­
sions for K~S in the case of various distribution func­
tions N(E}. 

A. Let us consider the monoenergetic spectrum: 

N(E)dE = Ne6(E- Eo)dE = Ne6(8- 8o)d8. (10} 

Here Ne is the concentration of the relativistic electrons, 
and 8 = E/mc2 is the dimensionless energy. Obviously, 
81] 2': 1. 

Substituting (10} in (7) and (9} and integrating by 
' parts, we obtain31 

(r) (r) . Nee,2 ;;;11 1 
x12 = -x21 = z cos q; --;:;;;2 ~ 62 

x{rn~+ - 1-- _1_/!,(z)- ..:.ft,'(z) (1- _6_)} 
T] T]38 3 2 3 TJ'82 ' 

(r} sin2 IP, Nee 2 ( ;;;H )' 1 xuzz=---- - -
· 2 mw2 w TJ 

x{TJ5~5 /H.••(zH 3-;;:8, tfi.22(z) (1- TJ'~')). (11} 

Greatest interest attaches to the frequency region in 
which 

oo/ We~ 1, z~1. (12} 

Under the condition (12}, the modulus of the complex 
functions fu,22(z) and f12(z) will be of the order of unity. 
It follows therefore that in the region of frequencies (12} 
the ratio of the nondiagonal components to the diagonal 
ones is (see (6}} 

I xi~21l _ I Im xi;121l 1 ·- Tjln-ctg<p~1, 
I xi7 •• 1 ~ I xlZ •• I TJ 

(13} 

and in this sense the tensor K~J is diagonal. The in­
equality (13} allows us to draw a conclusion that the 
normal waves are linearly polarized in a relativistic 
magnetoactive plasma. This conclusion, incidentally, 
is quite natural. For details see [1J and Sec. 3 below. 
We note here that the tensor K~J· describing the inter-

action of the radiation with the nonrelativistic ("cold") 
plasma, has in the frequency region (6a} the form [4 J 

3> All the energy-dependent quantities are taken in this section at 
E = E0 ; for brevity, we shall henceforth omit the index 0 . 
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(e) (c) . n,e2 . ;;;H ( . v ) 
?<12 =- X2i =I COS q:---- 1-21- , 

mw2 w w 

(c) _ :sin2 <P n,e2 ( ;;; H )' xu 22 = +--~· - ~ 
' 2 mro2 w 

+ i-." n,e2 
[ 1_( ;;;H)'( 1 + 3sin2<r + 3sin2q> )] (14) 

wmw2 w 2 2 ' 

where ne is the concentration of the nonrelativistic elec­
trons and v is the effective collision frequency (v « w ). 
In this case the following inequality is satisfied 

1 xi;>., 1 ~ 2 cos <r ~ ""'-- 1 
(c) ~ • 2 - ~ • I Xn,zzl stn <P WH 

(15) 

provided the angle w is not too close to 1Tj2. The in­
equality (15) shows that the tensor K~~ is antidiagonal. 

By virtue of (14) and (15), the normal waves in the cold 
plasma are circularly polarized. 

B. Let us take the power-law spectrum 

N,(E)dE=t.$-'d~ for~min<~<~max . ( 16) 
0 for ~ < ~min for ~ > ~max 

Here f!! min max = Emin max/mc2 and Ne is a parameter 
' ' -with the dimension of concentration; Ne differs from the 

actual concentration Ne by a numerical factor which may 
be large:4 > 

1 t-v t-v 
N, = N,--[~ max- ~min]. 1-y 

We shall assume that cB'max » ~min» 1; in addition, 
we put 

lJ ~ mr? IE =1 I~- (17) 

As is well known (see, for example, lll), formula (17) can 
be used when w » w~lwH sin cp • 

Greatest interest attaches to the frequency region in 
which 

1 w )'I• -'f, 
Zmin == ---. - 0 max~ 1, 

WHSlll'f 

( 
(J) )'h =-·t. 

Zmax == . /t miu > 1. 
WH SHl <:p 

(18) 

Assuming that the conditions (17)-(18) are satisfied, we 
substitute (16) in (7) and (9). Carrying out in (7) and (9) 
integration for the anti-Hermitian part of K~J· we can 

put 0min = 0 and <tmax = oo, since the integrals con­
verge rapidly at the indicated limits. As to the Hermit­
ian part, it depends little on the upper limit of the en­
ergy spectrum, and depends strongly on its lower limit; 
we can therefore use cB'max = oo when calculating the 
Hermitian part in (7) and (9), but we must retain ~min· 
The main contribution to the integral, which determines 
lmKU'>, is made by the term containing ln(1/7J); dis­
carding the other terms of 1m K~~ >, we obtain 

(r) (r) . N,e2 ;;;H [ ln ~min 1 
Xt2 =- X21 = ICOS'f ---

mro2 w ~"::;:n y + 1 
(19) 

-i· 2+_Y y+3 3,;zr( 3v+7 )r(3y_:t-,11) )( _ w )-<•+•>1'] 
8)'3 y + 1 12 12 WH sin q; 

4>The spectrum (16) is frequently written in the form KeE- -ydE; 
obviously, Ne = (mc2 ) 1 -'YKe. 

Calculating Re Kif/22 in (9), we expand the integrand in 
powers of z-1 and integrate with respect to dz, with 
limits 1 and zmax· As a result we obtain 

(r) sin2q> N6e2 ( ;;;H ~'( w )-<V-2)/2 
X11,22 = ---~ -, -----

2 TrWJ2 w WH sin q> 

{ 2 (( (J) )-(y-2)/2 ) . 3<?+1)/2 
X +-- -;::;--·--- -1 +~---

. y- 2 WH sin <p~2min 16 

xrC"1;2)r(3"1~10)[ v+ ~o ±(y+2>]}. (20) 

The described operations are valid for y ==: 2. When 
y < 2, the first term in the curly brackets in (20) can 
be taken in the form ~ 2/(y- 2) (see (18)). Then Re Kif,'22 

differs from the more accurate expression by a numeri­
cal factor of the order of unity. To calculate Re KiP21 

and 1m Kif)22, We used the integral representations of 
the Macdonald functions (see the Appendix of [sJ and also 
formula 6.561 (16) in l6l). 

For a power-law spectrum the ratio I Kin1 1 I I KiH2 1 

for y < 2 is equal to ' ' 

I x[;~21l (. w )V/2 ln &min t 
-(-r)-~ -- --- C g <f!, 
j Xu,22J Wmin fEmin 

(21a) 

and for y > 2 
I x[;~21l ( W ) ln &min 
-(-r)- ~ - -- ctg <P· I X11,22l Olmin (g min 

(21b) 

We have introduced the frequency Wmin = wH sin cp i5':Uin, 
which is the characteristic frequency of the synchrotron 
radiation of the electrons at the lower limit of the spec­
trum. As follows from (18), w/wmin » 1. 

Unlike the case of the monoenergetic spectrum (see 
(13)), expressions (21) can be either much smaller or 
much larger than unity. This means that the normal 
waves in a relativistic plasma with a power-law elec­
tron spectrum can be polarized either linearly5 > or cir­
cularly. Of course, an intermediate case of elliptical 
polarization is also possible. At a fixed value of w/wmin, 
the polarization of the normal waves depends on the 
quantity Wmin = Emin/mc2 : if wmin is sufficiently large, 
the polarization is linear, and at moderate values of 
Wmin it is circular (see below). 

3. We have thus calculated K~J· the relativistic part 

of the dielectric susceptibility tensor (see (11) or (19), 
(20)). 

We shall now use Eq. (2) to obtain expressions for 
the polarization vectors and the absorption coefficient 
of the transverse normal waves (see l4 • 8l). Putting in 
(2) k = ko + ~k, where ko = w..fi /c ~ wjc and I ~kl 
<<ko, we get 

(22) 

The total tensor K01 f3 which enters in (2) and (22) is ob-
viously given by K = K<r> + K<c> where K<c> is the 

01{3 01{3 01{3' 01{3 
tensor of the cold plasma. Separating the Hermitian 
and anti-Hermitian parts of K 0113 , we introduce the 
notation 

w (+h +if) ·(!l+A +ip) 4n-xa~= +1 · 
c -if - h - ip 11- A 

(23) 

5>unear polarization is implied in [2 •7 ]. The need for this refme­
ment was called to our attention by V. V. Zheleznyakov. 
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The contribution of the cold plasma in the expressions 
for h, f, JJ., etc. can be easily obtained by comparing 
(23) with (14); the contribution of the relativistic elec­
trons is determined by formulas (11) or (19) and (20). 

The polarization of the normal waves depends 
strongly on the ratio of the components f and p to the 
components h and A in (23). Let us ascertain under 
which conditions the tensor (23) can be regarded as 
diagonal. In the high frequency region w » WH, the 
relativistic anti-Hermitian part of (23) is diagonal: 
lp<rll « IA.<r>l. Therefore the tensor (23) will be di­
agonal under the condition 

Ill <!iii I hi and Ill <!iii P-1· (24) 

For the monoenergetic spectrum (10), in the frequency 
region w ~ we, the conditions (24) reduce to I Im Ki~' I 
« I K~fl22 1, which yields , 

n.<iii; NeTJ tg rp = N.[ (me" I E)'+ (roo I ro )2J"' tg q>. (25) 

For the power-law spectrum (16), the limitation on 
ne is insufficient. The conditions (24) reduce to I lmKi~ l I 
« Kifl22 1 and to I 1m K~fl I « I K~fk2 l. When y < 2 we ob­
tain respectively 

( 
(J) )-V/2 v 

ne<!iiiN. -.- rG;;;;,.tg!f, 
Wman 

( ro )W2 lnfGm;n 1 -- --- ctgcp<iii; ; 
OOmin /Smin 

and when y > 2 

( 
(J) )-! -!-.;2 

ne<!lii Ne --. fG min tg q;, 
Wmtn 

( liJ )lnfGm;n -- ---·-ctgrp<iii; 1. 
Wmin /Smin 

We recall that 

·lilmin = ~H{G min sin cp = -;;;H (Eminlm&) 2 sin rp, 

(26a) 

(26b) 

(27a) 

(27b) 

and that we have confined ourselves to the frequency 
region w » Wmin· The condition (26a) in a somewhat 
different form was derived in [ll. 

Let the conditions (24) and the ensuing co~ditions 
(25)-(27) be satisfied, so that the tensor (23) can be 
regarded as diagonal. Substituting (23) in (22), we get 
e~> and eg>, the polarization vectors of the normal 
waves, which are the normalized eigenvectors of the 
operator 41TWKa[3/c, and also Ak 111 and Ak121 • It is ob­
vious that 1m Ak 11' 21 is the amplitude damping coeffi­
cient of the corresponding normal wave. Retaining only 
the lower powers of the small quantities f and p, we ob­
tain 

2Ak<1• 2> =ill± (h +it.), 

(28) 

Formulas (28), confirm the previously made conclusion 
that the first and second normal waves are polarized 
almost linearly, across and along the projection H on 
the plane perpendicular to k. 

When the inequalities (26a) or (27a) are satisfied, but 
the inequalities (26b) or (27b) have an opposite sign, the 
influence of the cold plasma can be neglected, but never­
theless the normal waves are circularly polarized. In-

deed, under the indicated conditions, the quantity f 
greatly exceeds all the other quantities in (22) (see (21)). 
Retaining only the lowest powers of the small quantity 
rt, we obtain from (22) 

21\k(l,2)=iJ.t± {f+ip), 

e~l = l'~' e~l = -~~1- h~il.), 

e?J = 1~( 1- h~ it. ) , ef1 = ~2 . (29) 

Formulas (29) show that the first and second normal 
waves are almost circularly polarized. The circular 
polarization in the relativistic plasma is possible for 
the following reason: the main contribution to the Her­
mitian part of the tensor K<r>(w) is made by the non­
relativistic electrons with ~gergy near the lower bound­
ary of the spectrum. The frequency of the synchrotron 
radiation of these electrons is much lower than the fre­
quency under consideration, Wmin « w, and in this 
sense electrons with fG ~ Emin differ little from non­
relativistic electrons. Therefore if {G min is small com­
pared with w/wmin• the polarization of the normal waves 
can be the same as in a nonrelativistic plasma. It must 
be emphasized that in this case r 1 is the characteristic 
distance through which the plane of the linear polariza­
tion is rotated, and is much smaller than JJ.-\ which is 
characteristic distance over which the wave damping 
takes place. Indeed, if inequalities opposite to (26b) or 
(27b) are satisfied, we obtain from (21) 

I ( ffi )V/!JnfGm;n 
-~ -- ---ctgrp>-1 
1l Wmin 8min 

(y<2), 

f ( w ) InfGmin 
-~ -- ---ctgcp>-1 
J.l \ Wmjn 8min 

(y>2). 

It follows therefore that in a relativistic plasma, under 
the conditions indicated above, a strong depolarization 
of the radiation and rotation of the plane of polarization 
without noticeable absorption are possible. In this con­
nection, we note the estimate of the cold-plasma con­
centration, made in [91 on the basis of the observations 
of [lOl. The possibility of rotation of the plane of polar­
ization in a relativistic plasma was not taken into ac­
count there, and this may alter the results. For more 
details see [lll. 

4. A curious situation arises when the Hermitian and 
anti-Hermitian parts of the tensor 47Tc-1wKa[3 are equal 
in order of magnitude, for example when ne ~ Ne77 tan cp 
(see (25)). In this case the normal waves may not be or­
thogonal to each other: 

(30) 

where the asterisk denotes the complex conjugate. 
Let us imagine an observer who has registered a 

certain polarization and measures at each point the in­
tensity of the radiation with this polarization. When the 
radiation is transferred in a medium in which (30) takes 
place, the observer, having fixed a normal polarization 
e~>, notices that the intensity, generally speaking, does 

not satisfy the equation 

here the absorption coefficient is IJ.<j> = 2ImAk<j>, 
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Indeed, assume that the medium contains, besides 
the radiation with polarization, say, e~>, also radiation 
with polarization eg>; the electric field of the latter, 
under condition (30}, will be projected on the direction 
of e~>. If at the same time JJ.<1>"' JJ.<2>, then Eq. (31} 
will not be satisfied. 

This raises the question: what should the polariza­
tion direction be in order for the intensity to vary, in 
the case of transfer, in accordance with (31) regardless 
of the presence of radiation with another polarization. 
It is almost obvious that polarizations possessing this 
property (these can be called transfer polarizations, 
t~>, exist and are orthogonal to the normal polariza-

tions 

(32) 

Indeed, 1<j > = t~ >*t~ >Ia{3 is the intensity of the radiation 

with polarization t~ >, separated from the total radia­

tion. l 12J Multiplying Eq. (3) by t~>*t~>, we observe that 

(3} takes on the form (31) when 

(33) 

where Ka{3 = K~a (compare with (22)). From (33} we get 

immediately (32) if Ak<1> >" Ak<2>. Thus, the vectors t~> 

are the eigenvectors of the operator 41TWKa{3/c. 

I am grateful to V. L. Ginzburg, L. M. Ozernoi, and 
S. I. Syrovatskil' for a discussion. 

APPENDIX 

Let us calculate the integral with respect to de in (5), 
henceforth denoted S 12 (see also the calculations in l2, 131, 

which has many features in common with the present 
calculations). Using the integral representation of the 
Bessel functions, we write 

. +n +n 

l,.(x)ln'(x)= ~~: ~ da ~ d~ sin~ exp {i(a + ~)n- ix(sin a+ sin~)} 
-rr -n . 

Here a= a+ {3 and T =a -{3. Substituting (A.1) in (5}, 
we average S12 over a certain frequency interval Aw, 
such that WH « Aw « w (see (6a)). When w is varied 
in the interval Aw, the change of the quantities q and x 
will be of the order of 

and therefore the discrete character of the summation 
in n is smoothed out to a considerable degree and it can 
be replaced by integration with respect to dn. Putting 

1 1 
---.-:-= P--+ inll(n- q), 
n-q-i6 n-q 

where Pis the symbol of the principal value, and inte­
grating in (5) with respect to dn, we obtain 

n ln(x)ln'(x) -i +2n 23Hol 
~- =-~do ~ d,; 
n X n - q - ill 4Jt2X _ 2, O 

. o ,; {· 2 . . cr ,; } X sm 2 cos 2 exp tqo- txsm 2 cos 2 

1 2n 211--r: . 

(in(sign cr + 1) + 2nll(o)] = _.!_ ~ d,; ~ dcr 
2n x 

0 0 

o 't { cr ,;} Xsin-cos-exp iqo-2ixsin-cos- ; 
2 2 2 2 

ln(x)ln'(x) 1 2" 2n-< 0 't 
S-~-~=-~ d-.:~ dosin-cos-· 
n n - q - ill 2n 0 0 2 2 

{ . 2. . o 't} Xexp tqo- txsm 2 cos 2 . 

Substituting the latter formulas in (5), we write S12 in 
the following form: 

1 " N' 812=-~ d9sin2e[N/sin<pcos9--6 sincpsin9 
2n 0 p 

+ ! ( :e' ( ~ -cos cp cos e) - N p' cos cp sine)) J 
2n 2n--'t 

X~ { ( ~ sin-fcos; exp{iqa-2ixsin; cos; }da 
0 0 

1 cos(,;/2) ) 1 cos(-.:/2) } 
+2 (q-xcos(-.:/2)) 2 "- 2 (q-xcos(-.:/2))2 d-.:. (A.2) 

In the integration of the term in the round brackets in 
(A.2), the region a, T, 1/J = e- cp » 1J is insignificant. 
Extending the integration with respect to di/J and dT 
from - oo to + oo, and with respect to da 
= 2 (x cos (T/2)f113 dv from 0 to + oo, we obtain, after 
expanding all the quantities in powers of a, T, and 1/J and 
retaining the first nonvanishing term 

6 N' oo oo a 2--A--- ( -"--Np~" )~ dy(i ~ dvexp{ivy + i~} +_1_) 
Z Slll <p p z 0 _ 3 Y 

TJs [ 2 - 2i f { v3 } ---.-Np'ctgcp -+-zJ dvexp ivz+i-
z3sm q: 3 3 0 3 

(A.3) 

In the integration of the last term in the curly brack­
ets in (A.2), we have confined ourselves to the case of 
an isotropic function N(p). The integral with respect to 
de and dT reduces in this case to a tabulated integral, 
and we obtain 

, ( ~H )2( mc2)2 2 sin q; 2Np cos<p - ·-E ln--. 
(J) I] 

(A.4) 

For a non-isotropic function, the last term in (A.2) 
can be integrated with logarithmic accuracy, and we 
obtain in addition to (A.4) 

( N' ) (wH)2 (mc2)2 1 - -'}- - N po' sin <p ---;;;-- E ln-:;] . (A.5) 

Of course, if expressions (A.4) and (A.5) are added, it 
is necessary to make in (A.4) the substitution 

2 sin q: 1 
ln---+ln-

TJ TJ 

The sum of (A.3) and (A.4) yields S12. Substituting S12 
in (5), we obtain (7). The calculation of (9} follows the 
same procedure; expressions for Ku,22 analogous to (5), 
can be found, for example, in lSJ. 

1V. L. Ginzburg and S. I. Syrovatsky, Ann. Rev. 
Astron. and Astroph. 7 (1969). 

2V. N. Sazonov and V. N. Tsytovich, Radiofizika 11, 
1287 (1968). 



POLARIZATION OF NORMAL WAVES AND SYNCHROTRON RADIATION TRANSFER 583 

3 A. A. Andronov, V. V. Zheleznyakov, and M. I. 
Petelin, Radiofizika 7, 251 (1964). 

4 V. L. Ginzburg, Rasprostranenie elektromagnitnykh 
voln v plazme (Propagation of Electromagnetic Waves 
in a Plasma) Fizmatgiz, 1967 [Addison-Wesley, 1964]. 

5 D. S. Kuznetsov, Spetsial'nye funktsii (Special Func­
tions) Vysshaya Shkola, 1965. 

6 I. S. Gradshtei'n and I. M. Ryzhik, Tablitsy integralov, 
summ, ryadov i proizvedenii:' (Tables of Integrals, Sums, 
Series, and Products) Fizmatgiz, 1962 [Academic, 1966]. 

7 V. L. Ginzburg, V. N. Sazonov, and S. I. Syrovatskii:', 
Usp. Fiz. Nauk 94, 63 (1968) [Sov. Phys.-Usp. 11, 34 
(1968)]. 

8 V. M. Agranovich and V. L. Ginzburg, Kristallooptika 
s uchetom prostranstvennoi:' dispersii i teorii eksitonov 

(Spatial Dispersion in Crystal Optics and Exciton Theory) 
Nauka, 1965 [Wiley, 1966]. 

9 M. Rees and M. Simon, Astroph. J. 152, L145 (1968). 
10 H. D. Aller and F. T. Haddok, Astroph. J. 147, 833 

(1967). 
11 V. N. Sazonov, Astron. Zh. 46, (1969) [Sov. Astron.­

AJ 13 (1969)]. 
12 A. I. Akhiezer and V. V. Berestetskii:', Kvantovaya 

elektrodinamika (Quantum Electrodynamics), Fizmatgiz, 
1959 [Interscience, 1963]. 

13 K. S. Westfold, Astroph. J. 130, 241 (1959). 

Translated by J. G. Adashko 
125 


