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The coefficient for Cerenkov and collisional absorption of helicons in a Fermi gas of particles with a 
nonisotropic dispersion law is found for an arbitrary ratio of the phase velocity of the wave to the aver­
age velocity of the particles. 

1. In uncompensated semiconductors and metals, just 
as in an ordinary plasma, the propagation of helicoidal 
waves (helicons) is possible-electromagnetic waves 
with a frequency appreciably smaller than the cyclotron 
frequency of electrons (holes) and a wavelength consider­
ably greater than the Larmor radius of electrons (holes) 
with average velocity. 

Damping of helicons is due either to collisions or 
else to the collisionless Landau mechanism, i.e., an ex­
change of energy between the wave and resonance elec­
trons, having a velocity vz along the external magnetic 
field Ho close to the wave's phase velocity w/k 11 along 
Ho, and "captured" in an adiabatic trap formed by the 
field Ho and the variable magnetic field of the wave, Hz 
RJ H~ cos (k · r- wt). (1 ' 2 J In the collisionless case 
(w7 ~ 1 for w/k- (v), where 7 is the relaxation time 
of the carriers) the Cerenkov damping of helicons may 
appreciably exceed collisional damping. For particles 
with a Maxwellian velocity distribution the Cerenkov 
damping of helicon waves was previously determined 
in[3 J for a homogeneous plasma and in(1 J for an inhomo­
geneous plasma cylinder in the case of arbitrary values 
for the ratio of the phase velocity to the thermal veloc­
ity of the particles. For a degenerate Fermi gas the 
Cerenkov damping of helicons with phase velocity much 
smaller than the limiting Fermi velocity was investiga­
ted in article(4 J by Kaner and Skobov for the case of an 
isotropic quadratic dispersion law for the carriers, for 
the case of an isotropic quadratic dispersion law for the 
carriers, for the case of an ellipsoidal Fermi surface 
in the article by Walpole and McWhorter, [5 J and for an 
arbitrary carrier dispersion law in article[6 J by Kaner 
and Skobov. Collisional damping of helicons and the in­
fluence of collisions on Cerenkov damping of helicons in 
metals with w /k « VF for carriers with an isotropic 
quadratic dispersion law are investigated in the article 
by Buchsbaum and Platzman. (2 J Cerenkov damping of 
helicons in metals has recently been experimentally 
observed. [7- 10 J 

cles in the case of closed quasiparticle orbits in momen­
tum space. It is shown that the Cerenkov damping 
rapidly decreases with increase of the ratio of phase 
velocity to average velocity of the particles. 

The question of the polarization of helicon waves is 
also discussed. In a plasma under low pressure, when 
the energy density of the magnetic field H~/81T is much 
larger than the energy density of the particles, the com­
ponent of the electric field intensity of the helicon wave 
in the direction of the external magnetic field is much 
smaller than the transverse components; in a plasma 
under high pressure the components of the electric field 
of the helicon wave which are parallel and perpendicular 
to Ho are of the same order. 

In ordinary metals (no ~ 1022 cm-3 ) w/k « VF for H0 

< 106 Oe. Only in metals containing a small number of 
carriers or in semiconductors can the helicon phase 
velocity be of the order of the average carrier velocity 
for small magnetic field values. The results of the pres­
ent work may be applied to semiconductors with elec­
tron concentrations no ~ (1016 to 1017) cm-3 ; then for 
m* ~ 0.01 m and w/k ~ VF - 108 em/sec we find that 
k - 41TenovF/cHo - 103 cm-1 and w ~ 1011 sec-1 for H0 

- (102 to 103 ) Oe; here Landau damping of helicons will 
be comparable with or larger than the damping due to 
collisions if the mean free path l :;;: 10-3 em 
(7 ~ 10-11 sec). Such mean free paths can be achieved 
in sufficiently pure semiconductors, for example, in 
InSb at T = 77°K. l ~ 5 x 10-3 em (7- 5 x 10-11 sec)Y1J 

2. The electric field intensity E(r, t) = E0ei(k• r- wt) 
of the electromagnetic waves inside a dielectric medium 
with dielectric permittivity Eij is determined from the 
system of equations 

A;;E; = 0, (1) 

where Aij = N2 (KiKj- Oij) + Eij(w, k), N = ck/w is the 
index of refraction, and K = k/k is a unit vector in the 
direction of the wave vector. 

The condition for solvability of the system (1), 
det (Aij) = 0, gives the dispersion equation 

AN4 + BN2 + C = 0, (2) 

In the present article the coefficient for the damping 
of helicon waves (taking account of both the collisionless 
Landau mechanism as well as that due to collisions) is 
determined for a gas of quasiparticles with an arbitrary 
dispersion law and a nondegenerate Fermi distribution; 
the damping is calculated for an arbitrary ratio of the 
phase velocity to the average velocity of the quasiparti-

where 

C = det (e;,;), 
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and eijk is the unit pseudotensor of the third rank. 
The dielectric permittivity tensor has the form l•J 

ie2 00~ a;. "'";"x Ill (e, p,) '~" . eij=-~ deo- \" dp,-(~-) drvi(e,p,,T) 
:n: rt w ue J cuH e, Pz 

0 -1'-:mrtx I) 

X cxp [- ~-(i __ ) \· (kv (e. p, r")- w- iv) dr"] r V; (e, Pz, r') 
Wn e, Pz J J 

Xexp [~-( ,_· -) ( (kv(e, p, T")-w- iv) dT"] dr', (3) 
Wu E. Pz J 

where fa= [exp ((E- EF)/kT) + 1]-\ v = oE/Ilp is the 
velocity, WH = eHa/m( E, p2 )c is the cyclotron frequency 
of particles with charge (-e) and dispersion law E(p), 
the energy E and the component Pz of a particle's mo­
mentum in the direction of the external magnetic field 
Ha are integrals of the equations of motion* 

dp e 
dt= --;;-[vHo]; 

m(E, Pz) is the effective mass, 

m = _1_ OS(e,p,) S = ~ 5 dpxdPy = 5 de~ t!!_ 
2n 6e • v1 

is the area of the intersection of the surface E (p) = E by 
the plane Pz = const, T = wHt, and tis the time of motion 
of a particle along an orbit in the magnetic field. 

We shall consider the case of closed orbits. In this 
case v and p are periodic (with period 21T) functions of T 

which one can represent in the form of Fourier series: 

v, = v, ( e, p,) + L; v;n) ( e, p,) ein-<, 
w;60 

(4) 

where vz(E, Pz) is the average value over a period of the 
particles' velocities, Vx = vy = 0. 

Performing the integration in (3) with respect to T 

and taking (4) into account, we obtain 
, 2 oo co Pzmax (l.)* (n) 

e-=~ ~ \' d Dfo \ d m(e,p,)A, (e,p,,k)A, (e,p,k) 
1' n!i,3w n=-oo j 8 iJe J p, w- nwu (e, p,)- k,u, (e, p,) + iv ' 

U -Pzmax (5) 
where 

1 2n 

A(nl(e,p,k)=- S dn(r)exp {- inr+ ikp(e,pit)}, 
2Jto 

1 ~ y(nl(e, p,) . 
p(e,p,r)= ---LJ --.--e'"'. 

Wn ( e, Pz) n=;60 zn 

(6) 

(7) 

In the presence of several kinds of current carriers, the 
tensor Eij is represented in the form of a sum of ex­
pressions (5) for each kind of particle. 

3. In the case of helicon waves the following inequali­
ties are valid: 

UJ <,; Wn, kpL ~ 1, V ~ WH, (8) 

where PL = (v)/wH denotes the Larmor radius of the 
particles, and (v) is the average (with respect to the 
Fermi distribution) value of the velocity. Taking in­
equalities (8) into consideration, from Eq. (5) it is not 
difficult to find that 

. . 4nn0ce 
exy =::::: -e~~x= -ze2= lT)--, 

wHo 
(9) 

where TJ is the sign of the charge, and no is the equili­
brium density: 

no= 4n~h3 ~ fo dp. 

*[vH] =vXH. 

The remaining components of the tensor Eij are given by 

8 _ ~ (' d at. [ (kpl!J' + r;;;;=p;j' (k,v,- w- iv) J 
xx - w J P fJe w + iv- k,v, m'wn' ' 

8 _ .5!_ (' d Ofo [ ~2 + (Px- Px)2 (k,v,- w- iv) -] 
Yll - w j p fJe w + iv - k,v, m2wn2 ' 

e = _:!__ (' d iifo v,' 
Z% UJ J p ae UJ + iv - k,v, • (10) 

_ _ __. rJ 1 d i!fo [ ti,(kpvy) -1- (v,- v,) (Px- fix) ] 
ep- 8'"- '-; J p fJe w + iv- k,v, mwn 

where a= e2/1T 2 n 3 , and the bar denotes averaging with 
respect to T. 

Expressions (9) and (10) are given in a coordinate 
system in which the z axis is parallel to Ha, and the 
wave vector lies in the (XOZ) plane so that k = (k sin e, 
0, k cos 8) where e is the angle between k and Ha. In 
order to obtain expressions (9) and (10) the following 
change of the variables of integration was used: 

(e,p,. r)-+(px,py,Pz) [4], ~ dpc:p = S deS m dp, ~ d't'c:p. 

For particles with an isotropic quadratic dispersion 
law 

e = p2 I 2m, v = (-v.1.. sin T, V.J.. cosT, v11 ), 

p = [ (v.L I wu) cosT, (v.L I wn) sin T, 0), 

so that Exz = Ezx = 0. If E = p2 /2m and the gas is degen­
erate, then expressions (10) have simple forms: 

UJ 2 . p . 
Bxy = -z--= -ze2, 

{()(DH 

3Wp2kVp Sin2 9 [ 1 + S 10 l 
e;y=Bxx-----~-- (1-\;2)2ln~-----2s"+-;-s, 

8WWH2 COS 9 -1 + S ,3 

ezz= 3wp' [1-.l.ln~J w+iv 
k 2v p 2 COS2 8 2 -1 -j- \; W ' 

w p 2 sin 8 l 3 3 1 + ~ l Byz=-i 1--~2 --~(1-\;')ln---·, (11) 
wwn cos e 2 4 -1 + ~ 

where w~ = 41Tnae2 /m is the plasma frequency, vF is the 

limiting Fermi velocity, VF = (31T2 n3 n0/m3 ) 113 , and 

Re \; < 1. 

In order of magnitude, for w /k ( v) ~ 1 in a plasma 
under low pressure ({3 = 41Tnom (v2 ) /H~ « 1) we have 

e, ~ rup2 / k2(v2) ~ jexyj ~ Je,yj ~ iexzl ~ (12) 
~ '"r' I ww" ~ isxxi ~ ieyyj ~ Wp2 I WH2• 

Taking these inequalities into account, in the zero-order 
approximation one can set A = Ezz cos28, B = 0, and 
C = EzzE~ in the dispersion equation (2). Then from 
Eq. (2) we find that 

N2 = 4:rtn0ec I wHo cos 0 or w = cHok2 cos 0 I 4:rtnoe. (13) 

To the next approximation, assuming y = Im k << R.e k, 
we obtain a final expression for the coefficient of 
Cerenkov damping of helicon waves 

.Y_ = Im [ exx + BtiY cos2 e + (exy sine- e., cos 9) 2 + Exz21 (14) 
k 4e, cos e 4e,e, cos e . 

where the quantities Eij are determined by formulas (10) 
In order of magnitude, for k ( v) :;:: w :;::, v we obtain 

from here the result that y /k - kp « 1, where 
p = (v)/wH is the Larmor radius of the particles. 
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4. In the general case expression (14) is complicated. 
It simplifies greatly for a degenerate Fermi gas with 
an isotropic dispersion law. Substituting expression (11) 
for E:ij into Eq. (14), for 11 « w 

_!_= rosin29 /F(C), (15) 
k roHcose 

where 

. -~ (2x) 2 + b[(2b+xA) 2 -(n:x)2J+4x[2b+xAJ<1-bA/2)' 
!FH.>-oo b (1-bA/2) 2 +(nb/2) 2 

x= (1-b2), A=In[(1+b)l(1-m. 

In the region of small phase velocities (' « 1), fF(') 
= 37T/32' and expression (15) goes over into the expres­
sion obtained in [4J. For t - 1 the damping y slowly 
(logarithmically) tends to zero: 

/F(b) = (3n I 8)[ln (1-m-2• 

A graph of the monotonically decreasing function fF(t), 
characterizing the dependence of the damping on the 
ratio of the phase velocity to the limiting Fermi velocity 
is shown in the Figure. For comparison, a graph of the 
function fM(z), which determines the damping coefficient 
for helicon waves in a gas with a Maxwellian velocity 
distribution for the particles, [3 J is also shown on the 
same Figure: 

FORMULA 
'V (I) sin2 e 
-=---!M(z) 
k roH cos e (16) 

where 
? • (I) 

v(z) = ---=.e-•' et' dt z = -=----
in O l'2 kVT COS 9 

-( T)'" Vr--
m 

Taking collisions into account by using expression 
(11), it is not difficult to obtain from (14) the expressions 
of article[21 for the coefficients for collisional and 
Cerenkov absorption of helicon waves in a degenerate 
Fermi gas for t « 1. 

5. Now let us consider the polarization of helicon 
waves. In a plasma under small pressure, upon fulfill­
ment of inequalities (12) from Eqs. (1) we obtain 

Ey IE, = i cos e, E, IE, = (iey, cos e- e2 sine + e,,) I e,. (17) 

From (17) it follows that the electric field component 
Ez which is parallel to the magnetic field is considerably 
smaller than the components Ex and Ey which are per­
pendicular to the magnetic field. For w/k :::; (v) in the 
general case of particles with an arbitrary dispersion 
law Exz "' Eyz .... E2 "' wp/wwH and 

E, IE,~ (k2<v2> I CilCilH) ~ ~~ 1. 

In a gas consisting of particles with an isotropic quad­
ratic dispersion law, Exz ~ 0 and for /w//k « (v), 
E:yzi sin 9 ~ E2 sin 9 so that in this case the component 

Ez turns out to be very small: Ez/Ex "'{3w/k(v). 
In the case of a plasma under large pressure ({3 ;2; 1) 

the phase velocity of the helicon waves is appreciably 
smaller than the average velocity of the particles, 

wi k<v> ~ (ro /roH)'i• ~ kpL~ 1. 

For {3 > 1 the coefficient for the damping of helicon 
waves is determined as before by formula (14). In this 
case the component Ez is of the same order as the 
transverse components Ex and Ey. 

In conclusion the authors express their deep gratitude 
to A. I. Akhiezer and V. P. Silin for a discussion of the 
work and for suggestions. 
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