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The transverse magnetoresistance tensor is calculated for the surface space-charge layer in semicon­
ductors. The scattering of electrons by the surface is assumed to be diffuse. It is shown that, when the 
band curvature is such as to cause degeneracy of the electron gas in a potential well at the surface, the 
components of the magnetoresistance tensor oscillate not only as a function of the magnetic field but 
also as a function of the surface potential. It is suggested that this effect can be used to investigate the 
nature of the scattering of electrons by the surface and the electron dispersion law well within the con­
duction band of a semiconductor. 

STUDIES of the galvanomagnetic effects in metal films 
exhibiting diffuse reflection from the surface, carried 
out first by Sondheimer, [lJ showed that when a magnetic 
field is applied normally to the surface of the film, the 
diagonal components of the electrical conductivity ten­
sor oscillate with d/r, where d is the film thickness and 
r is the Larmor radius. It is known that, under certain 
conditions, a potential well for carriers may be estab­
lished near the surface of a semiconductor. If the band 
curvature at the surface is stronger than kT, the motion 
of the carriers is localized in the well and the conduc­
tivity of such a surface channel has much in common 
with the conductivity of a film. We may expect that, in 
accordance with the results of Sondheimer, the trans­
verse magnetoresistance of such surface channels 
should oscillate not only as a function of the magnetic 
field but also as a function of the surface potential 
which, in this case, governs the width of the potential 
well. Information on the Fermi energy of electrons in 
such a well, i.e., information on the constant-energy 
surfaces lying high in the conduction band of a semi­
conductor, can be obtained from the magneto resistance 
oscillations by establishing such a band curvature at the 
surface that the electron gas in the potential well be­
comes degenerate. 

We must mention that these oscillations are purely 
classical. They occur in magnetic fields which do not 
satisfy the quantization conditions and they are observed 
in the absence of the size quantization of electrons in 
the surface potential well. The physical cause of the ap­
pearance of the oscillations in the dependence of the 
magnetoresistance on the magnetic field under such 
classical conditions is as follows: in the case of diffuse 
scattering from the surface, the principal contribution 
to the channel conductivity is made by a narrow "beam" 
of electrons moving almost parallel to the surface and 
the drift velocity of such electrons oscillates with the 
magnetic field. These oscillations disappear in the case 
of specular reflection of electrons from the surface be­
cause of the averaging of the electron velocities over all 
possible directions. 

The channel surface conductivity in the case of dif­
fuse scattering by the surface was considered, together 
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with the Hall effect, in[2 ' 31 • However, these treatments 
are limited to the case of weak magnetic fields: n T 

<< 1. The present paper reports a calculation of the 
components of the electrical conductivity tensor of sur­
face channels in semiconductors in arbitrary magnetic 
fields and at those surface potentials which ensure 
degeneracy of the electron gas. It is shown that these 
components oscillate as a function of the magnetic field 
as well as a function of the electric field of the space 
charge. 

Let us consider a semiconductor (to be specific, we 
shall assume that it is p-type) which carries a positive 
charge on its surface. This positive charge is compen­
sated by electrons in the surface layer and consequently 
the Fermi level shifts, relative to the band edges, in 
such a way that a potential well of depth el/Js is formed 
at the surface. We shall consider the following geometry 
of the problem (cf. Fig. 1): the z axis is directed norm­
ally to the surface into the sample and the surface lies 
at z = 0. The electric field of the space charge is direc­
ted along the z axis: Ez > 0. An external electric field, 
Ex, is applied along the surface (along the x axis). A 
magnetic field is directed along the z axis. 

The dispersion law of the semiconductor is assumed 
to be isotropic and quadratic: E = p2/2m. The energy is 
measured from the bottom of the conduction band in the 
interior of the semiconductor; Ev is the position of the 
top of the valence band. 

In order to calculate the electrical conductivity ten­
sor, it is necessary to solve a transport equation of the 
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The electron distribution function is represented, as 
usual, in the form 

(1) 

f= fo +/I, (2) 

where fo is the equilibrium distribution function and f1 

is a small correction. We shall assume that the collision 
integral can be replaced by the relaxation time: 

If= f- fo =!.:__, 
T T 

The equilibrium distribution of the electrons in the 
space-charge layer is represented, in general, by the 
function 

fo = [ exp { J!ok; e} + 1 r . (3) 

Here, JJ.o is the position of the Fermi level in the inter­
ior of the semiconductor, measured from the bottom of 
the conduction band; E = p2/2m- el/J(z) is the total elec­
tron energy. 

The space-charge potential is defined as follows 

when z~oo ljl{z) =0, 

when z = 0 w(z) = '~'• > 0. 
We shall assume that the scattering of electrons by the 
surface is diffuse, i.e., that f1 = 0 when z = 0 for elec­
trons with Vz > 0. The solution of Eq. (1) was obtained 
by Zemelc31 using all these assumptions and diffuse­
scattering boundary conditions. Following the notation 
employed by Zemel, c31 we obtain an expression for f 1 : 

evr:iifo/oe { /i = {1- eM cos Q-r.1.K) (a sin 8 + b cos8) 
1 +Q"t2 

-e"KsinQ-r.1.K(bsin8-acos8) }. (4) 

Here, v = v'v~ + v;.; () is the polar angle in the (vx, vy) 
plane; tan() = vxlvy; 

·v, 
m dvz' 

K(v,,e,)=-~ , , 
e '0 -r(e,,v, )E,(e,, v,) 

Ez = (1/2)mv~- el/J(z) is the energy of the electron mo­
tion along the z axis, which is one of the integrals in 
Eq. (1); 

.1-K=K-Ko; 

v,.. 
K = ~) dvz' 

0 e 0 -r(e,,v,')E,(e,;v/) 

is the value of K on the surface; 

v, = V! (e, + eljl,), 
eH 

Q=-, 
me 

a = Ex- Q-rEy, b = Ey + Q-rEx. 

We shall now calculate the current. By definition, the 
total electron current per unit surface area is 

j =- e f dz ~ dvxdvydv,vf. 
0 

(5) 

Substituting Eq. (4) into Eq. (5) and isolating the terms 
proportional to Ex and Ey, we obtain 

(6) 

*[vH) =v X H. 

where '?' r vi-r ii/o 
Gxx = -e2 .l dz .l dvxdvhdv,----:--::-:-: 

1 + Q"t2 ae 

X{ (1- eM cos Qr:l1K) (sin2 8 + Q-rcos 8 sin 8) 

- e"K sin Q-rl1K(Q-rsin2 9- cos fl sin 0)}; 

2 r r v"t ajo 
Gxy =- e \ dz .l dvxdvydv, , • 

r 1 + Q--r" ae 

X { (1- e"K cos Q-rt1K) (cos8 sin 8- Q-r sin2 9) 

(7) 

- e"K sin Q-rl1K(sin•9 + Q-rcos 8 sin 0) }. (8) 

Similarly, 

jy =apEx+ UyyEu. (9) 

It follows from Onsager' s reciprocity principle that 

f1yx{-~2) = r1xy(Q), (10} 

r r v"t at. 
a = - e• .l dz .l dv dv dv ------
•• ~ • x • ' 1 + Q"t2 ae 

x{ (1- e"K cos O-rl1K) (sin2 8- Q-rcos 8 sin 9) 

- e"K sin QdK(Q-r sin2 9 +sinS cos 9) }. (11) 

The components of the tensor aik can be calculated 
conveniently using the following integration variables: 
v, (), Ez, and K. The Jacobian for this transformation is 
Tv/m. 

We shall assume that the potential well is very deep 
and that the total electron conductivity is due solely to 
those electrons which are located in the space-charge 
layer at the surface. After some transformations, we 
obtain 

Here, Oyy = l1xx· 

AH = e· 2Ko cos 2~h:Ko + 2Ko- 1, 
BH = e-2 K• sin 2Q-rKo- 2Q-rKo, 

and (. .. >v E is defined as follows , z 00 C>:,) 

r r v3-r2iifo/&e 
(J(x))v,•, = .l de, dv(i+ Q•r:•)2 /(x). 

-e¢8 0 

We shall calculate the integrals in Eqs. (12) and (13) 
introducing the following simplifying assumptions: 1) we 
shall assume that the relaxation time is constant; 2) we 
shall use a linear model of the space-charge potential, 
i.e., Ez = const. Moreover, we shall specify the explicit 
form of the function afo/a E. We shall assume that the 
electron gas in the surface potential well is degenerate 
so that 8f0/8E = -o(E- EF), where E is the total energy 
given byE= Ez + mv2/2. After integration we finally ob­
tain 

Here, 

cro= 

11xx = Go + G! CJS 2Q-ra + C12 sin 2Q-ra, 

11xy = 11a + 112 cos 2~ha - 111 sin 20-ra. 

a= }'2m (eF + e¢.) I e-rE., 

4:n:e"t2(eF+ e¢,)2 {~a(1 + Q2-r2)-~(1- Q2-r2) 
m'(1+Q2-r2)2 15 4 

1-6Q2-r2+Q4-ri 6(1-Q2-r2)(1-14Q2-r2+Q'-ri)) 
+ 4a2(1-!-Q2-r2) 2 - 16a'(1+Q2-r2) 4 f 

(14) 
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Cf! = 4Jte2r2 (e.,+ e.p,) 2 2e-2" { ~- 6Q4;2 + e<-r' 
m3 ( 1 + Q4:2) 2 4a2 ( 1 + Q4;2) 2 

1 - 10Q2-r' + 5Q"t' + 3 _( 1 - Q'r') ( 1 - 14Q'r' + Q'T') -} 

8n 3 (1 + S1 2r')' 16u'( 1 + Q'-r')' 

4ne'T2 (eF-j-e.p,) 2 . { 1-Q'T2 
Uz =- 2e·za Sh 

m3 (1 + Q'T2) 2 u''(1 + Q'T2 ) 2 

5- 1US~2-r2 + Q'r' 3- 10SJ',;2 + 3Q'-r') 
+ 3 -Sa'(1 +- [12,;2)3 + 3 s,t;(:i +s~2,;2)'-- f 

4:rte2't2 ( e.,+ eljl,) 2 { 2 1 
a,= - rn'' ( 1 + 1~'-r')-,- 2121: 15 a ( 1 + Q4;')- T 

1 - Q2,;2 3 - 10Q2-r2 + 3Q'-r') 
+ 2u2(1 + Q2-r2)2 - 38;'(1 + Q',;')-' -) 

In an analysis of the expressions in Eq. (14), we 
shall exploit the following fact: in the triangular-well 
model Ez = 1/Js/L (Lis the total width of the well) and a 
can be represented in the form 

a= 2L0 / l(e., + e~1,), 
where La= (ei/Js + EF)L/ei/Js is the effective width of the 
well for electrons whose energy is equal to the Fermi 
energy and l{EF + ei/Js) is the mean free path of the same 
electrons. 

We note that !ha = 2L0 /r, where r is the Larmor 
radius. It follows from Eq. (14) that, in order to ob­
serve oscillations, we must satisfy the condition 

2Lo-;2;r. (15) 

On the other hand, these oscillations are rapidly 
damped when a increases because a 1 and a2 a: exp(-2a). 
Therefore, we must have a :S 1, i.e., 

(16) 

The results obtained are in agreement with those re­
ported by Sondheimer. [11 It is known that the position 
of the first maximum of the Sondheimer oscillations 
determines the value of the momentum at the Fermi 
surface. In the case considered here, the position of the 
first maximum of the magnetoresistance curve corre­
sponds to nTa - 1, i.e., 

H 
--E y2m(eF + eljl,) ~ 1, 
me , 

and the above expression can be used to determine the 
effective electron mass when H, Ez, and the degeneracy 
energy {EF + ei/Js) are known. This effect can be used 
to study the properties of the constant-energy surfaces 
in the conduction band. The advantage of this method is 
that the degree of degeneracy of the electron gas in the 
surface potential well is independent of the surface 
potential, which can be varied easily by an external 
field or by adsorption. 

We shall now find numerically when conditions (15) 
and (16) are satisfied. Treating these conditions as one, 
we obtain r ~ l, i.e., nT ,_ 1. We shall assume that 
T - 10-13 sec, m = 0.1ma. The condition nT - 1 is satis­
fied by a magnetic field H - 6 x 104 Oe. The electric 
field Ez is related to the charge per unit surface area 
Ns in the following manner: Ez = 41TeNs/E; the degener­
acy energy is 

_ _ [ 15 (2nlt) 3e~N.• r· 
e.p, + ep- eE,L0 - 4 e(2m)'" J . 

We thus find that a depends on the electron density per 
unit surface area and this dependence is given by: 

'"=' ;lt [ ~~~ (Zne~~7' r. 
Substituting into the above expression the cited numer­
ical values of T and m and also assuming that E = 16, we 
find that a :s 1 when Ns - 1011 cm-2 • When Ns increases, 
the value of a decreases. In order to reach appreciable 
degeneracy energies, for example, EF + elf!s- 0.1 eV, 
we must have values Ns .... 1012 cm-2 and such values of 
Ns are known to satisfy condition (16). 
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