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The vibrational spectrum of isolated vortex lines is investigated for two microscopic models: 1) the 
model of a charged Bose gas, and 2) charged superconductors containing impurities of paramagnetic 
atoms. It is shown that in case 1) the function w(k) has three branches, two of which have a gap and 
the third-the gapless branch-is associated with the conductivity of normal electrons; in case 2) the 
frequency has only an imaginary part which corresponds to only a damping of the vibrations. The ob­
tained results indicate that the hydrodynamical treatment is not valid. 

IT is well known [l,zJ that in superfluid helium vortex 
lines exist which are able to undergo vibrational motion; 
in this connection the spectrum of these vibrations has 
been established. l31 Vortex lines also exist in supercon­
ductors of the second kind. However, the problem of the 
vibrational spectrum of superconducting vortices in a 
microscopic theory has, as yet, not been investigated. 

Determination of the vibrational spectrum in super­
conductors is associated with the solution of an essen­
tially nonstationary problem which, in principle, may 
be solved by starting from the Gor'kov equations. How­
ever, in view of the complexity of these equations, the 
problem is difficult to solve. Another possibility is the 
establishment and investigation of a nonstationary gen­
eralization of the Ginzburg-Landau equations. Unfortu­
nately, in the general case such equations have not been 
obtained. 

The possibility of oscillations of the Abrikosov lines 
has been studied in a number of articles l4- 71 on the basis 
of phenomenological equations to zero order in the ratio 
of the coherence length r 0 to the penetration depth A.. In 
article lSJ it is shown that in an uncharged superconduc­
tor the vibrational spectrum of a vortex line coincides 
with the vibrational spectrum in an uncharged ideal 
liquid, in the same way as this occurs in the case of a 
non ideal, uncharged Bose gas. The spectrum for a 
charged superconductor was investigated in articles 
l 4 , 5• 71 • The obtained results indicate the presence in 
the spectrum of low-frequency oscillations of a gapless 
type. 

In the present article, in order to understand the in­
fluence of charge, the vibrational spectrum of a single 
vortex is investigated in two microscopic models: 1) the 
model of a charged Bose gas, and 2) charged supercon­
ductors containing paramagnetic impurities. In both of 
these cases time-dependent equations of the Ginzburg­
Landau type exist which permit one to comparatively 
easily investigate the spectrum of the low-frequency 
vibrations. 

1. CHARGED BOSE GAS 

If a charged Bose gas is placed in a constant mag­
netic field, then after the field reaches a certain critical 
value vortex lines appear in the gas; these lines are 
completely analogous to the Abrikosov vortex lines in 
superconductors of the second kind. In this Section we 
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shall dwell on a study of the vibrational spectrum of an 
isolated line. 

A Bose gas may be described by a system of equa­
tions, one of which is the equation of motion and the 
second is Maxwell's equation. This system (in units 
li = 1) is written in the following form: 

iJ<D 1 ( e )z i-=-- V-i-A <D+gi<DI 2Cll-gno<D, 
iJt 2m c 

rot rot A = ~n 2i: { <D ( V + i--'; A) rll* - <D' ( V - i : A) <D } 

4n iJA 1 iJZA 
--;;zonat-Czat"' (1) 

where if>(r, t) is the wave function of the condensate, 
A(r, t) is the vector potential of the field, g is a con­
stant characterizing the strength of the pair interaction, 
n0 is the density of particles in the condensate at an in­
finite distance from the vortex line, and an is the nor­
mal conductivity. The term proportional to an takes into 
account the presence of normal electrons, leading to 
electrical neutrality of the sample. 

In the stationary case an isolated vortex line corre­
sponds to the solution 

(2) 

where r is the distance to the center of the vortex line, 
and fJ is the polar angle. With Eq. (2) taken into account, 
the system (1) can be written in the form of the well­
known equations of article: lSJ 

1 d d 1 
---r-a0 +-Q2ao + 2mgno(ao2-1)ao = 0, 

r dr dr r02 

__t!___!____t!_rQ = ~ao2Q, (3) 
dr r dr '),} 

where 

').."=~, Q(r)=~AO(r)-~, 
~n~ c r 

(4) 

and r 0 is a quantity having the dimensions of a length 
and having the meaning of the radius of the vortex line. 

The boundary conditions for the system of equations 
(3) are the following requirements: a 0 - 1, Q- 0 as 
r - oo and a 0 - 0, I Q I - r 0 /r as r- 0. The solutions 
of the obtained system are known, and we shall not write 
them down; we only note that we are interested in the 
case K = A./r 0 » 1. 
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In order to determine the vibrational spectrum of a 
vortex line it is necessary to linearize Eq. (1) close to 
the stationary solution (2). Let us assume 

Ill {r, t) = l'7to {ao(r) eie + 'ljJ (r) e-irot+U.z} = i~o {<po + 'ljl}, 
IIJ• (r, t) = "fno{ao(r)e-ie + 'ljl• (r)e-2i6-trot+t"z} = Yno{'Po + 'tf}, (5) 

A(r, t) = A"{r) +At (r)e-i9-irot+ikz = A• + Ato 

where a 0 , A0 are the solutions of the system (3), and lj!, 
IJ!*, and A1 are small corrections. Choice of the angular 
dependence is determined by the fact that in this case 
the variables are separable. We note that in the gauge 
chosen by us the sealar potential is equal to zero. 

In addition, let us divide the potential A1 into sole­
noidal and potential parts so that 

At= A,'+ Vx, 

where x is an unknown function and div A~ = 0. 
Thus, we have six unknown quantities 1j!, lj!*, A~, and 

X· It is convenient to supplement the obtained system 
of five scalar equations by one more equation which is 
obtained by taking the operation div on the linearized 
electrodynamical equation . However, as a consequence 
of the fact that the solutions of the system (3) do not de­
pend on the coordinate z, and also div A~ = 0, the equa­
tion for the component A~z, which is contained in only 
one of the equations of the system, is split off from all 
remaining equations, and one does not need to consider 
this equation in order to determine the spectrum. Fi­
nally we obtain 

( k") ie 1 ( e )' w-~ 'tJl+-. -k2<pox=-~ V-i-AU ¢+gno(2ao2 -1)tp 
!.m 2mc 2m c 

( w + ~)¢' +~~k'cpo'x = _1_( V + i_:__A•)' ¢'- gn0 (2ao2 -1)¢' 
2m 2mc 2m c 

- gnoao'e-3i6'1' + ___!.:_ (2Vrpo' + 2i_:_A0<po )At' 
2mc c 

+ ?ie ( qx,' Y' 2 -t2Vq;o'· V -t2i_:_A",ro' v) x, 
~me c 

(6) 

4 . eno ( , 0 ,., , 2 . e A" •) =- n•.-- rpo v- v<po - !- <po 'ljJ 
2nu c 

The boundary conditions are the requirements that 
all solutions be regular as r - 0 and that all solutions 
vanish as r - oo. 

We shall solve the system (6) by the method of per­
turbation theory, assuming w and k to be small. For 

this purpose, let us write Eq. (6) in vector form: 

Ll = (Lo + i.,)f = 0, 

where L0 does not contain the quantities w and k, and 
f = (lj!, lj!*, A~, x) is the vector of the solutions. 

(7) 

One can construct a solution of the matrix equation 

Lofo = 0 (8) 

by starting from the properties of the system (1). Equa­
tions (1) are gauge invariant and, in addition, their form 
does not change during a displacement of all coordinates 
by a constant vector. Therefore, if f(r) is a vector of 
solutions, then f(r +b) will also be a soluti,on of (1); sim­
ilarly if f(r) is a solution then the vector f(r, x) which 
is transformed according to the gauge transformation 
1j! -1J;eiex/c, A- A+ V x will also be a solution of (1) 
for any arbitrary tin.l,e-independent function x (r ). Lin­
earizing f(r +b) and f(r, x) with respect to band x, we 
obtain solutions of the system (6) with w = 0. 

Thus, we have 

fo = ( ~;.) = 
A'' 1 

X 

a ( ~~o - ~o) e-zie- iaoX e-cio 

ai~e-i0 
r 

adA" -io 
dr e 

__<:____ xe-i9 
e 

(9) 

Here a is an arbitrary constant, and x is an arbitrary 
function of r. 

Further, let us construct the operator Ko conjugate 
to the operator L0 and the function F0 conjugate to f0 ; 

these are determined in the following way. Let there 
be a vector function L0 f0 , let us multiply it from the 
left by F 0 , take the integral and integrate by parts, then 
the expression (f0, K0, F 0 ) is obtained. Let us define the 
function F 0 so that the integral vanishes for an arbitrary 
function f0 ; then we call F 0 the function conjugate to f 0 , 

and the operator K0 arising in this connection is called 
the conjugate to the operator L0 • 

F o, just like f 0 , consists of two parts each of which 
corresponds to two kinds of invariance of Eqs. (1). We 
denote the part containing the arbitrary function X by P, 
the second part is denoted by M. Multiplying the system 
(6) in turn by P and M, integrating it and taking into con­
sideration that KeF 0 = 0, we obtain the following two 
equations: 

~~ da 2 
iw x--0 rdr+2a(o) 

• dr 
0 

( 4rri __c_u_'_) a r r (A")' ( dA"--)'] + -O'nW+ --J - + --
C2 c2 4rrn0 0 L r dr 

rdr 

_ k' s r ( ao )' ( dao )' m {(A o )' ( dA o )'}] 
a-;;; o L r + -y,:- + 4nno -;: + a-; r dr = (11) 

It should be noted that the vector P is a solution of the 
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system (6) for w = 0 and arbitrary k "" 0, where M sat­
isfies (6) for w = 0 and k = 0. Therefore, the terms 
proportional to k2 are not present in Eq. (10), but they 
are present in Eq. (11). 

As a consequence of the arbitrariness of f(r), Eq. 
(10) is a differential equation determining the unknown 
in the zero-order approximation function x(r) which, 
being substituted into Eq. (11 ), determines the desired 
dispersion equation. The requirements that the function 
x(r) be bounded as r - 0 and x(r) = 0 as r - co serve 
as the boundary conditions for the differential equation 
following from (10). Integrating this equation we obtain 

~ 

x(r)= ia mc'--1-. -(-1"_-~ ~ a02(t)tdt). 
')..2 ( w + 4mcrn) 2 r 0 

Substituting (12) into (11), we find the dispersion 
equation 

(12) 

mc2 w 1 k2 1 
--:---:--;-;---:-+ 2w + -- w (w + 4nicr.)- -In-= 0 

%2 (w+4rricrn) 2mc' m kro (13) 

From the obtained Eq. (13) it follows that w(k) has 
three roots. Two of the branches of w(k) have a gap 
whose magnitude can be expressed in the following way: 

(14) 

From the obtained expression it follows that one gap is 
associated with charge, but the other does not depend 
on it. The latter is not small, and therefore we shall 
not consider it. Thus, the quantity of interest to us is 

w0 = -4nicr,. + mc2 /2x2• (15) 

Hence it is immediately evident that this gap vanishes 
as the charge tends to zero (e - 0, K - co). 

For an = 0 we obtain 

[ 1 k2 1 ]''• ro=-2mc2 ±2mc2 1+-+--In- . 
2x2 2m2c2 kr0 

(16) 

Once again let us consider the smallest root, having the 
form 

mc2 kZ 1 
m=-+-ln-. 

2x2 2m kro 
(17) 

As already noted, the gap vanishes as e- 0, i.e., in 
case the spectrum has a gapless form, which agrees 
with the spectrum of hydrodynamical oscillations of an 
uncharged vortex. [aJ 

In addition, there is one more gapless branch (an "" 0, 
e "" 0); however it is related to the value of an and as 
an - 0 it goes over into w = 0. 

Let us estimate the magnitude of the gap. According 
to Eqs. (15) and (17) 

(18) 

where wp = 47Tn 0e'1m is the plasma frequency. In order 
to estimate the quantity mr0 we note that we did not 
take into account the Coulomb terms in Eq. (1), corre­
sponding to a violation of electrical neutrality near the 
axis of the vortex line. At distances of the order of r 0 

where the charge density is changing in a substantial 
way, we have (in order of magnitude) 

1(d2 1d) -- -+-- tlJ-eetiJ=O, 
2m dr2 r dr 

( d2 1d) -+-- e = 4nnoe(it!JJ'-Jcp,,J 2}, 
dfl- r dr 

where E is the scalar potential. 
From the equations written down it follows that 

1 
---til- 4nnoe2ro2 ( JtiJJ 2 -Jcpoj 2)t!J = 0, 

2mr02 

or 1/md ~ Wp· 
From the obtained results it is clear that in the ab­

sence of conductivity due to normal electrons, the vi­
brational spectrum of a charged vortex starts with a 
gap. This gap vanishes in the limit K = co, in accord­
ance with the results of a hydrodynamical treatment. l 4• 5l 

However, for actual values of K (even K = 100) this gap 
has a magnitude of the order of wp which actually makes 
the results of a hydrodynamical treatment inapplicable. 

2. SUPERCONDUCTOR CONTAINING PARAMAGNETIC 
IMPURITIES 

Let us consider a superconductor containing para­
magnetic impurity atoms placed in a field. In this case, 
as established in article l 9 J, one can obtain a generali­
zation of the Ginzburg- landau equations to the nonsta­
tionary case. These equations have the form 

(}1'1. -D (v- 2i~A )' !'1. +~n'(Tc2 - T2 ) ( j£\j'-1)1'1.= 0, 
Ot c 3 

4nm:,-r, { ( e ) , rotrotA=ie-,--2n2 (T, 2-J2} !'1. V+2i-A 1'1. 
2mc c 

( e ) } 4nan OA -!'1.' V-2i-A !'1. -----
c c2 Ot ' 

(19) 

where ~(r, t) is the order parameter, 2/Ts = (1/T1) 

- (1/T2 ) is the relaxation time associated with reversal 
of the spin, T1 and T2 are certain characteristic times 
between collisions, D = v2T j3 is the coefficient of dif­
fusion. 

In the stationary case Eqs. (19) have solutions of the 
vortex type a0 (r )eiB, A0(r ). In order to determine the 
vibrational spectrum, once again we linearize the sys­
tem (19). Then, just as in Section 1, equations appear 
relative to the corrections lj!, lj!*, A~ and x. We shall 
solve the linearized system according to perturbation 
theory in exactly the same way that this was done in 
the case of a charged Bose gas. 

The operator L0 arising in this connection is com­
pletely analogous to the expression for the case of a 
Bose gas. However, the operator L1 differs significantly 
from the previous case. The difference consists in the 
fact that in the first two lines of this operator the imag­
inary unit i appears in front of the quantity w; this is 
associated with diffusion-type equations of motion. In 
addition the terms proportional to w2 are not present 
in L1 • 

Once again the solution of the equation LJ0 = 0 is 
constructed by starting from the invariant properties 
of Eqs. (10), and as before it has the form (9). The so­
lution of the conjugate equation is constructed in analo­
gous fashion. Then, using the method indicated in Sec. 1, 
we obtain two equations: 

(20) 
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00 00 

i 5 [ ( ao ) 2 ( dao ) 2 4:na D WJ'XPo2 dr-iwa 1 - +- +-2-n-
0 0 .r dr c 

m {(AOjr)~+(dAOjdr)2} J r"[( a0 )2 ( dao )2 
· rdr+ak2D J - + -

4n3n-rn·,(T z- T2) 0 r dr 

+ 4:n•n-r,-r.~c2-T2) {( ~o)' +(a~o/}J rdr=O. (21) 

where a0 and A0 are solutions of the steady-state Ginz­
burg-Landau equation. 

One can approximately derive a solution of Eq. (20). 
In order to do this it is necessary to set a~= 1. Then, 
requiring boundedness of x(O) and x(r) = 0 as r - oo, 
we obtain 

x(r)= i~-ia~KI(~r); 
r 

(22) 

where K1(t) is a Bessel function of imaginary argument, 
and the constant {3 is defined as 

c2 12:rrn(2e)2 -r. 
~2=-- -r,-n2(Tc2-T2). 

4nanD mc2 3 

Substituting (22) into (21) we obtain the dispersion 
equation 

or 

- iw!R + k2D In - 1- = 0, 
kro 

00 

!R= ~ ~ a.t'(r}K!(~r)dr+) [( dtzo.)2 + 4:rt~nD 
0 0 dr c 

k2D 1 
w=-i-ln-. 

!R kro 

(23) 

(24) 

The obtained result (24) indicates that the oscilla­
tions are strongly damped, i.e., free, undamped oscilla-

tions of vortex lines are impossible in a superconductor 
containing paramagnetic impurity atoms. 

Thus, both of the considered models show that the re­
sults obtained with the aid of a hydrodynamical approach 
turn out to be invalid. This assertion apparently also 
holds for the case of an ordinary superconductor, al­
though due to the complexity of the equations no one has 
yet been able to carry out the procedure stated above 
for obtaining the dispersion equation for the Gor'kov 
equations. 

In conclusion the author expresses his deep gratitude 
to S. V. Iordanskil' for his constant guidance. In addition 
the author expresses his sincere gratitude to E. L. An­
dronikashvili for stimulating discussions. 

1 L. Onsager, Nuovo Cimento 6, Suppl. 2, 249 (1949). 
2 R. P. Feynman, in Progress in Low Temperature 

Physics, edited by C. J. Gorter (North-Holland Publish­
ing Company, Amsterdam, 1955), Vol. I, p. 17. 

3 L. P. Pitaevskil', Zh. Eksp. Teor. Fiz. 40, 646 
(1961) [Sov. Phys.-JETP 13, 451 (1961)]. 

4 P. G. deGennes and J. Matricon, Rev. Mod. Phys. 
36, 45 (1964). 

5 A. L. Fetter, Phys. Rev. 163, 390 (1967). 
6 M. P. Kemoklidze and L. P. Pitaevskil', Zh. Eksp. 

Teor. Fiz. 50, 243 (1966) [Sov. Phys.-JETP 23, 160 
(1966)]. 

7 A. A. Abrikosov, M. P. Kemoklidze, and I. M. Kha­
latnikov, Zh. Eksp. Teor. Fiz. 48, 765 (1965) [Sov. Phys.­
JETP 21, 506. (1965)]. 

8 A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 
(1957) [Sov. Phys.-JETP 5, 1174 (1957)]. 

9 L. P. Gor 'kov and G. M. Eliashberg, Zh. Eksp. Teor. 
Fiz. 54, 612 (1968) [Sov. Phys.-JETP 27, 328 (1968)]. 

Translated by H. H. Nickle 
200 


