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The Mermin- Wagner inequalities [21 are extended to the anisotropic case. The impossibility of mag
netic order in the anisotropic Heisenberg model is proved in the one-dimensional case. In the case of 
two-dimensional systems the Mermin-Wagner inequality imposes a restriction on the transition tem
perature. 

1. The number of exact results referring to the theory 
of phase transitions has until recently been small. How
ever, several years ago Hohenberg[1J rigorously derived 
Bogolyubov's inequality (see below) and it became possi
ble to set up a series of exact relations. Hohenberg 
himself proved that the presence of nonzero anomalous 
pairing or of quasi-averages (a gap 11 in the case of 
superconductivity and a condensate density n0 in the 
case of superfluidity) in one- and two-dimensional cases 
contradicts the Bogolyubov inequality. It follows hence 
that superconductivity and superfluidity are impossible 
in one- and two-dimensional systems. An analogous 
treatment was carried out by Mermin and Wagner [21 for 
an isotropic Heisenberg model. They proved that in an 
external field h directed along the z axis the projection 
of the magnetization vector on the field direction satis
fies the following inequalities: 

8 const I hI ,1, ,< T'f, (one-dimensional case), 

S const '1 , < ---= (two-dimensional case). 
T'f, l'Jn I h I 

(1) 

(2) 

It follows hence directly that ferromagnetism and anti
ferromagnetism in one- and two-dimensional systems 
are impossible for such a model. These results would, 
of course, also follow from the theory of spin waves, 
however, the existence of spin waves in such systems 
has itself not been established. It is analogously readily 
shown that the spin correlation function of the spins 

x(k, w) = ~ eikJ (S1(t)S;(O))., 
J 

also diverges for such systems; ( ... )w denotes the 
Fourier transform in time. From this formula it is 
seen that 

(S,(t)S,(O)).,= ... ~ d S x(k,w)dk. 
(<.<•) 

Taking also into account that for w = 0, x(k, 0) ~ 1/wk, 
where for the isotropic model 

Wh = (/(0) - J(k)) - /r;2, 

we obtain the above-mentioned divergence of the corre
lation function. 

However, it is clear that for an anisotropic Heisen
berg model the preceding inequalities should change. 
This is also apparent from the fact that, as is well 
known, the two-dimensional Ising model admits the ex-

istence of a phase transition and the Ising model can be 
considered as the limiting case of the anisotropic 
Heisenberg model. 

2. In order to derive our inequalities we write down 
the Bogolyubov relation 

<{A, A+}><[[CH]C+]>;;;;. TI<[C, A]>l 2• (3) 

Here the Hamiltonian His chosen in the following form: 

if=-~ l(R- R')S(R)S(R')+ ~ a(R- R')S,(R)S,(R'), 
R,R' R,R' 

a is the anisotropy energy, A and C are arbitrary 
operators, the curly brackets denote an anticommutator 
and the square brackets-a commutator. 

Following Mermin and Wagner, we choose in the 
Bogolyubov inequality 

A= S_(-k); C = S+(k), 

where 

S;(k)= ~ e-ikRS;(R) 
R 

is the Fourier component of Si (R). The results of sim
ple commutation are completely analogous to those of 
Mermin and Wagnerl2 1 : 

({A, A+})= 2(Si(O)+ S~2 (0)) = 2 ~Sx2(R)+ Sy2 (R) < 2S(S + 1) 
R 

(here we imply successive integration over k) 

([[CH]C+J):;;;;; < ~ [ /(R) (1- eikR)S(S + 1) 
R 

+a(R)S."-a(R)eikR ~ {S+,S-} 

[C,A} = 2S,(O) = 2 !:S,(R). 
R 

Introducing the notation 

f= ~[/(R)+a(R)]R2S(S+1), y= ~a(R) 
B B 

and substituting the cited results in the new notation into 
Bogolyubov's inequality, we obtain 

(4) 

where p-1 is the volume per spin. 
Integrating over k (assuming the volume to be infin

ite, we replace the summation by integration) over the 
first Brillouin zone, which can only make inequality (3) 
stronger, we obtain: 
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in the one-dimensional case 

T < 2n _l'l_f}'i S(S + 1) / arclg-~ V LJ":.I ; 
IS, I IS I lvl 

(5) 

and in the two-dimensional case 

(6) 

Here ko is the Brillouin zone boundary. For an aniso
tropy energy a - 0 formulas (5) and (6) go over into 
the inequalities (1) and (2) of Mermin and Wagner. When 
J - 0 the Hamiltonian H corresponds to the Ising model. 
For r - 0 we obtain the so-called X- Y model. For this 
model the inequalities (5) and (6) yield 

T<2nlviS(S+1)/ko in the one-dimensional case, 

T < (2n)'lviS(S + 1) 1 ko' in the two-dimensional case. 

Thus, in the form of Mermin and Wagner the inequali
ties (5) and (6) do not forbid ferromagnetism in one
dimensional systems, i.e., for such systems there is not 
sufficient "accuracy" for this inequality. Our mention 
of the X- Y model here is not accidental. As is well 
known, in the spin model of superconductivity (and 
superfluidity) it is precisely this model which corre
sponds to the BCS theory. We shall see below that the 
presence of the polarization Sz contradicts the Bogo
lyubov inequality only in the one-dimensional case (for 
an anisotropic system). However, here there is no lack 
of correspondence with Hohenberg' s results, (1] since in 
the X- Y model the polarization Sx corresponds to a gap 
and for the former one can readily obtain the inequality 

S'< S(S+i) ~~~ 
x T J (2n)d lflk' 

Thus the choice of the operators A and C in the form 
of Mermin and Wagner for the anisotropic model is un
fortunate. This is also clear from the fact that in this 
case 

WI< = [! ( 0) (! ( 0) ~ ! ( k) ) J'iz ro k, 

whence it follows that in the one-dimensional case the 
spin correlation function diverges. 

Choosing now in the appropriate normalization 

C=S,+iSy, A=S_(~k), 

we obtain the following inequality: 

IS, I'< S(ST+ 1) (2n)d s ~~~k 
Thus, while the introduction of an arbitrarily small 

anisotropy permits ordering in the two-dimensional 
case, in the one-dimensional case the anisotropy does 
not "save" the situation. It is interesting to note that 
one can also derive certain limitations on the quantity 
Sz from below which immediately clarify the situation 
in the one-dimensional case. To this end we choose 

C=S+(k); A=S,(~k) 

and introduce the additional notation 

The result of commutation then yields the following in
equality: 

S,Z(Iflk2 + lv!S,2 ) ~ T6. 

Since we are interested in the case of small Sz (in the 
vicinity of the transition temperature), at a finite tem
perature this inequality is equivalent to 

- 1 canst 
S, > iT J -k- dk. (7) 

It follows from (7) and (5) that in the one-dimensional 
case ferromagnetism is also impossible for an aniso
tropic Heisenberg model. 

Of course, if one retains in (7) the quantity IY IS~ in 
the numerator, then the derivation of the contradiction 
of this inequality in the one-dimensional case remains. 
If one takes into account the possibility that o = 0, then 
substituting this condition in (3) and taking into account 
the fact that ({A, A+}) ~ o, we also obtain Sz = 0. We 
note that analogous inequalities can also be obtained for 
x(k, w). 

3. In conclusion, we make several remarks. 
1) One can easily include in our treatment an ex

ternal magnetic field h parallel to the z axis. This adds 
to the Hamiltonian the term 

H' = -h ~ S,(R), (8) 
R 

and in all the results a term lhSzl is added to IY IS~. 
2) One can take into account the presence of anti

ferromagnetism by introducing into expression (8) the 
factor exp (ik · R) which takes on values of ± 1 depending 
on the sublattice to which R belongs. 

3) Bogolyubov's inequality in its complete form has 
the following appearance: 

<{A~ <A>, A+- <A+>}><[[CH]C+]) ~ TI<[C, A])j". 

Formula (3) is hence obtained under the assumption that 
the averages (A) and (N) in the left-hand side of the 
inequality are negligibly small. This is admissible for 
proving that the existence of quasi-averages is impossi
ble; however, for accurate estimates of the transition 
temperature one must use the complete form of Bogo
lyubov' s inequality. 

4) Inequalities analogous to those of Hohenberg[11 

can be proved for systems finite in one or two dimen
sions. This proof is carried out for quantities integrated 
over the "cross section" or by using the complete sys
tem of functions depending not only on k but also on the 
integer n which numbers the bands that appear as a re
sult of the quantization of the transverse dimension. A 
derivation analogous to that of Hohenberg[ 1 J then leads 
to the absence of anomalous pairing in each band (their 
presence would contradict Bogolyubov's inequality). 

5) In order for the above treatment to be valid one 
requires a finite radius of interaction or, more accur
ately, that the series for r and y converge. 

6) In transforming the inequalities, we have made 
them weaker; this leads to a change in the numerical 
coefficients but does not change the dependence of Sz on 
the temperature, the magnetic field, and the anisotropy 
energy. 
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