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The electric and magnetic properties of a semiconductor in a strong electromagnetic field with a 
frequency exceeding the width of the forbidden band are investigated. Interaction between the elec­
trons and the strong electromagnetic field is rigorously taken into account and an exact solution of 
the problem is obtained by means of a canonical transformation. Quasiparticles with a new disper­
sion law subsequently appear. The interaction of the quasiparticles with each other and with the 
phonons is taken into account on the basis of perturbation theory and this permits one to derive the 
kinetic equations for the quasiparticles by the standard method. A characteristic feature of the 
quasiparticle spectrum is the presence of a gap. In this connection, the electromagnetic properties 
of the system are analyzed by methods used in superconductivity theory. It is demonstrated that 
there is no anomalous diamagnetism in the stationary state. On the other hand, the absorption of 
the additional electromagnetic wave of frequency lower than the gap width decreases sharply. It 
is also shown that the presence of a gap changes significantly the shape of the current-voltage 
characteristic of the transition between a semiconductor and a semiconductor in the saturation 
state. 

INTRODUCTION 

THE recent development of quantum generators has 
raised a new set of problems, which can be arbitrarily 
called electrodynamics of strong electromagnetic 
waves. From the purely theoretical point of view, these 
problems are distinguished by the large value of the 
interaction between the charged particles in the wave 
and by the impossibility of using perturbation theory 
with respect to this interaction. The general approach 
to these problems should obviously consist of a rigor­
ous allowance for the interaction with the wave and the 
use of different approximations for the interaction of the 
charged particles with other objects. This is precisely 
the approach used in many papers pertaining to electro­
dynamics in vacuum (ll and to resonant interaction with 
two-level molecules [zJ. 

In the present paper we develop a similar approach 
as applied to the interaction of a strong electromag­
netic wave with a semiconductor. The most essential 
factors here are the electronic transitions between the 
valence band and the conduction band under the influ­
ence of the electromagnetic field. By virtue of the 
momentum conservation law, the matrix elements of 
the transition connect only two states with each other 
(one in the valence band and one in the conduction band). 
The problem is therefore analogous to the problem of 
a two-level system in an alternating external field[ 3 J 
and can be solved rigorously. This solution is obtained 
by means of a canonical transformation, which gives 
rise to quasiparticle, with a new dispersion law. The 
interaction of these quasiparticles with one another and 
with the phonons can be taken into account by perturba­
tion theory, making it possible to obtain by a standard 
method a kinetic equation for the distribution functions 
of the quasiparticles. In the employed approximations, 

all the observed quantities are expressed in terms of 
the distribution function of the quasiparticles and of the 
parameters of the canonical transformation. 

In this paper we develop the appropriate technique, 
we determine the quasiparticle dispersion law, and we 
construct the kinetic equations. In the particular case 
of zero temperature and absence of recombination, we 
obtain the stationary state of the system and calculate 
the interband absorption coefficient. 

A characteristic feature of the energy spectrum of 
the quasiparticles is the presence of a gap that depends 
on the angle between the directions of the momentum 
and of the electric field of the wave. In this connection, 
it is of interest to examine the electromagnetic proper­
ties of the system; this is done with the aid of methods 
usually employed in superconductivity theoryr4 l. It is 
shown that in the stationary state there is no anomalous 
diamagnetism. However, the presence of a gap changes 
the character of the absorption of the additional weak 
low-frequency electromagnetic wave, and greatly 
changes the current-voltage characteristic of the tunnel 
transition between the semiconductor and the semicon­
ductor in the saturated state. 

The proposed method is valid, obviously, when the 
frequency of the transitions between the bands, under 
the influence of the incident wave, is larger than the 
collision frequency: 

Vcv is the matrix element of the interband transition. 

(1) 

T in the right side of the inequality (1) should be taken 
to mean the smallest of the times of electron-electron 
or electron-phonon collision or the recombination time 
TR· The inequality ATR >> 1 is the necessary condition 
for saturation, and is always satisfied in quantum 
generators. We neglect in this paper also the nonreso-
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nant part of the interaction in the interband transitions 
as well as the oscillations of the electron momentum 
under the influence of the field within the limits of one 
band. We use a system of units with fi = c = 1. 

1. FORMULATION OF PROBLEM AND CANONICAL 
TRANSFORMATION 

Let us consider a semiconductor placed in the field 
of a strong electromagnetic wave with vector potential 

A= Aocos (wt- kr), kAo = 0. 

The wave frequency w is close to the distance t:.. be­
tween the conduction band and the valence band 

(2) 

0 < (J)-L\~A. (3) 

The electrons in the crystal are described by Bloch 
wave functions 

ljl1P (r) = e1P•u1P (r), 

where p is the quasimomentum and l is the number of 
the band. 

By virtue of condition (3 ), the principal role in the 
calculation of the wave function of the crystal in the 
field is played by resonant transitions of electrons be­
tween the top of the valence band and the bottom of the 
conduction band, for which the condition Ec( p) 
- Ev( p) - w = 0 is satisfied. Accordingly, we include 
the resonant part of the interaction with the electro­
magnetic field in the zeroth-approximation Hamiltonian, 
the eigenstates of which will be determined exactly: 

Ho(t) = ~ E(p) (ap+ap + b_p+b_p) +I. (P) (ap+b!.e-imt + b_papeiwt). 

p ~) 

Here ap and bp are the operators for the production 
of an electron in the conduction band and a hole in the 
valence band, 

1 
~(p) = 2 eA0v,.(p), (5) 

The matrix element Vcv(P) can be regarded, without 
loss of generality, as real. For simplicity we shall 
henceforth consider a quadratic dispersion law for the 
electrons and holes, with identical effective masses: 

E(p) =l:J./2+Jfl./2m. (6) 

As is well known, at the frequency w ~ t:.., we can 
neglect the wave vector k compared with the electron 
quasimomentum, as was indeed done in (4) and (5). 

We first use the unitary transformation 

U (t) = exp{- ~t ~ ap+ap + bp+bp} (7) 
p 

to change over to a representation in which the Hamil­
tonian (4) does not depend on the time: 

fJ 
Ho= U+(t)Ho(t) U- iU+Tt U = ~ S(p) (ap+ap + bp+bp) (8) 

where 

p 

Po2 w-L\ 
2m=-2-

Henceforth all the operators and the wave functions 
will be considered in the representation (7 ). 

By means of the canonical transformation 

(9) 

the Hamiltonian (8) is reduced to diagonal form 

Ho = ~ e(p) (u,,+ap -1- ~-P+~-p). (10) 
p 

the new operators satisfy the usual anticommutation 
relations {a+ ap} = {f3pf:lp} = 1, and the remaining 
anticommutafors are equal to zero. The functions up 
and V-p should satisfy here the system of equations 

the solution of which we choose in the form 

, _ _!_, s(P)) ·= _!_( 1 _s (P)) A(P) 
Up - 2 1 + e(p) ' V-p 2 e(p) ' UpV-p =- 2e(p) ' 

where (11) 

e(p) = l's'(P) + A•(p). (12) 

The operators ap ( ai)) and (:jp ((:jp) are the operators 
of annihilation (creation) of quasiparticles of type a 
and (:j. It is seen from (9) and (11) that when ~ < 0 and 
I ~ I » I A I the creation of a pair of quasiparticles 
(a, (:i) means annihilation of an electron-hole pair; 
when ~ > 0 and ~ » I A I, the creation of a pair of 
quasiparticles means creation of an electron-hole pair. 

The function E(p) is the energy of a quasiparticle 
with momentum p. As follows from (12 ), the minimal 
value of the energy is 

Bmin = IA(p) I, 

and this mean value is reached at a momentum I p I 
= p0 • Thus, the energy spectrum of the quasiparticles 
has a gap. From the definition of A(p) (5) we see that 
the magnitude of the gap depends on 8-the angle be­
tween the direction of the momentum and the direction 
of the electric field in the wave. In the isotropic model 
assumed by us, the matrix element Vcv(P) is directed 
along the momentum p, and consequently 

~(p) =A cos e. 
We note that there exists directions from which the 
gap vanishes. 

(13) 

Let us find the state produced in our system after 
the passage of the leading front of the wave. If the 
width t 0 of this front satisfies the inequality t 0 » 1/A, 
then the passage of the front can be regarded as an 
adiabatic switching-on of the field. At each instant of 
time the state of the system is described in terms of 
the operators ap and /3p, which are defined by the 
transformations (9) with instantaneous value A. In the 
adiabatic approximation, the conserved quantities are 
the quantum numbers, i.e., in our case the occupation 
numbers apap and (:jpf:ip· Consequently, their values 
after switching on the interaction coincides with the 
values in the absence of the field (A = 0). Assuming 
that in the absence of the field the crystal is in the 
ground state, we have 

+ {ap+ap=O, p>po 
Up Up= b_pb-p+ =·1, p < p; 

(14) 

For f:ipf:ip we obtain the same result. Thus, in the 
state produced after the passage on the leading front 
of the wave, the distribution of the quasiparticle has 
the form of a Fermi step with limiting momentum Po· 



ELECTRIC AND MAGNETIC PROPERTIES OF A SEMICONDUCTOR 119 

2. KINETIC EQUATIONS FOR QUASIPARTICLES 

The Fermi distributions for the quasiparticles (14) 
are valid only in the absence of collisions. The pres­
ence of collisions leads to relaxation of these distribu­
tions. The relaxation is described by the kinetic equa­
tions for the quasiparticle distribution function. The 
most appreciable contribution to the collision integral 
of the kinetic equations is made by the electron-elec­
tron and electron-phonon interactions. However, as we 
shall show below, the result of the relaxation (the sta­
tionary distribution function) is physically obvious in 
the absence of recombination and does not depend on the 
form of the collisions. We shall therefore obtain the 
kinetic equation for the simplest case of electron­
phonon interaction. 

The Hamiltonian of the interaction between the elec­
trons or holes or the phonons is of the form 

He!=] G(p,p',q)(a,+a,.+b-pb~P')cq++h.c. (15) 
pp'q 

where G(p, p', q) = g(q)o(p + q- p'), and for sim­
plicity we assume g( q) to be the same for both hands· 
cq is the phonon creation operator. ' 

By subjecting the Hamiltonian (15) to the transfor­
mation (7) and going over to quasiparticle operators, 
we get 

Het= ~ <I>(n,n',q)an+an•Cq++h.c. 
nn'q (16) 

<I>(lp, 1p', q) = <I>(2p, 2p', q) = G(p, p', q) (upUp• + v_,u_p•), 
<I>(1p, 2p', q) = -<I>(2p, 1p', q) = G(p, p', q) (upV-p•- Up•V-p}. 

To abbreviate the notation, we have introduced here 
the sym+bol n = (i, p), i = 1, 2, with Cl!!p = ap and 
a2p = fLp. 

The Hamiltonian (16) describes the processes of 
emission and absorption of phonons by quasiparticles, 
and also the annihilation of a pair of quasiparticles into 
a phonon and the inverse process of creation of a pair 
by a phonon. It is precisely the pair creation and an­
nihilation processes which lead to a result that is at 
first glance unexpected, namely the relaxation of the 
Fermi distributions. 

Assuming the interaction to be small, it is easy to 
calculate in first order of perturbation theory the prob­
abilities of the different processes. The kinetic equa­
tions for the distribution functions 

/"'(p) = (ap+ap), /~(p) = (~p+~P) 

are now written in standard fashion. For example, 

f) 
-f"'(p)= 2n ~ I<I>(ip, 1p',q) I'B(e(p)+ w(q)- e(p')} 
fit p'q 

); {/"'(p') (1- /"'(P)) + N (q) (f"'(p')- r(P))}­
-I<I>(1p', 1p,q) I'B(e(p')+ w(q)- e(p)) 

x{f"'(p) (1- r(P') H N (qJ U"'(P)- t"'(P'))} -1 <I>(1p', 2p, q) I' 

XB(e(p)+ e(- p')- w(q)} {/"'(P)/~(- p')+ N (q) (/"'(p) + /~(- p') -1) }. 

(17) 

Here N( q) is the phonon distribution function, which 
we shall henceforth assume to be in equilibrium with 
the temperature T. Equations (17) should be supple­
mented by the electroneutrality condition 

] /"(p)=] f~(p), 
p p 

which follows from the condition that the number of 
electrons and holes must be equal. 

When A - 0 Eqs. (1 7) go over into the ordinary 
kinetic equations for the electrons and holes interact­
ing with the phonons. When A differs from zero, Eqs. 
(17) differ from the ordinary kinetic equation in that 
the electromagnetic field enters not in the left, dynamic 
part of the equation, but in the collision integral, in the 
amplitudes of the <I> and o functions. The latter cir­
cumstance, in the case of A comparable with the Debye 
frequency WD indicates apparently that the field influ­
ences the collision act. We note that the o function in 
the third term of (17) leads in quasiparticle-annihila­
tion processes to certain hindrances connected with the 
gap in the spectrum. This, however, does not influence 
the form of the stationary distribution function when 
1/TR = 0. 

Let us find the stationary distribution of the quasi­
particles. From the condition that the collision inte­
grals must vanish it follows that the functions fa and 
f f3 should be the Fermi and chemical potentials IJ. a and 
1.!.[3, satisfying the condition I.!. a+ 1.!.{3 = 0. The electro­
neutrality condition leads to the requirement that the 
chemical potentials be equal, i.J.a = 1.!.[3, from which it 
follows that each of them must vanish, so that 

r(p) = fB(-p) = fpxp (e(p) IT)+ 1]-I. (18) 

This result is physically obvious. It follows directly 
from our approach, in which the interaction leads only 
to transitions of the quasiparticles or to annihilation. 
The stationary distribution is in this case the Gibbs 
distribution with Hamiltonian (11 ), and the phonons play 
the role of the thermostat. The Gibbs distribution to­
gether with the electroneutrality condition leads, as is 
well known, to the functions (18). These general con­
siderations show that the final result of the relaxation, 
i.e., the form of the distribution functions (18 ), does 
not depend on the character of the collisions. A 
specially simple result is obtained when T = 0: 

/"'(p) = /~(p) = 0. (19) 

The distribution of the electrons and holes has in this 
case the form 

f"(p) = jh(-p) = v'-p, 

i.e., the form of a step which is smeared out over a 
width mA./po at momentum values near p0 (when p~ 
>> rnA., as is henceforth assumed. In the case A - 0 
this result can be readily understood from simple 
physical considerations. Indeed, by virtue of the con­
servation laws, the electromagnetic wave realizes 
transitions of electrons with momentum p0 from the 
lower band to the upper one; in the case of phonon 
emission (T = 0!) the electrons only lose energy, fill­
ing all the states with lower momenta. 

As seen from (19 ), at zero temperatures the system 
relaxes to a state with zero occupation numbers with 
respect to the quasiparticles. In the subsequent sec­
tions we shall consider the properties of our system 
in the state >¥ 0 defined by the conditions 

'ap 'l'o = fLp 'l'o = 0 

This state will henceforth be called the saturation 
state. 

(20) 
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3. COEFFICIENT OF ABSORPTION OF A STRONG 
ELECTROMAGNETIC WAVE 

We define the absorption coefficient by the relation 

X=Q/J, 

where Q = (j ·E(t)) is the energy dissipated in the 
crystal per unit time and per unit volume; the bar de­
notes averaging over the time; I is the intensity of the 
incident wave. That part of the current operator which 
is in phase with the electric field is given by 

j =- ie sin wt :3 Vcv(P) (ap+~-P+- ~-pap). (21) 
p 

In the state (20 ), the mean value of the current opera­
tor (21) vanishes, i.e., we deal with saturation of the 
interband absorption coefficient. 

Allowance for the electron-electron and electron­
phonon interactions in the saturation state does not 
lead to absorption. This is a natural result, for in this 
state the system is in equilibrium, in accordance with 
the results of the preceding section. A nonzero value 
of the absorption coefficient is obtained when recom­
bination is taken into account. Let us consider the 
case of radiative recombination and let us take the 
interaction Hamiltonian in the form 

here 

HR= ~ rp(p,p',k)e-iootb_pap,dko++h.c.; 
pp'k6 

!Jl(p, p', k) == ef2n / wkekovn.(P)Il(p + k- p'), 

eki5 is the quantum polarization vector, and dkli is its 
creation operator. 

After determining the corrections to the wave func­
tion (20) in second order of perturbation theory in HR, 
we obtain for the absorption coefficient 

(I) "' 1 'II.= /ls::.l -;- Up2P-p'. (22) 
p 

Here 1/TR = (%)e 2 wlvcvl 2 is the probability of 
dipole radiation of the photon in the interband trans­
ition in the absence of a strong wave. In (22) we have 
neglected the wave vector of the quantum compared 
with the electron quasimomentum. Calculation of the 
integral in (22) leads to 

mwpo/, 
'11.=-·- Po2 >m/,. 

16nh:R 

This result agrees with the corresponding result of[5l, 
where the saturation effect was analyzed by a different 
method. Thus, the state (20) is indeed a saturation 
state. 

To calculate the absorption coefficient at T >t! 0 we 
used the density-matrix formalism. With the aid of the 
standard procedure[6 l equations were obtained for the 
single-particle quasiparticle density matrix (a~ an). 
Using the small parameter 1/XT « 1, these equations 
were solved by successive approximations. The zeroth 
approximation yields the kinetic equations (17) for the 
diagonal elements. In the next approximation, the 
density-matrix nondiagonal elements needed to calcu­
late the absorption coefficient are expressed in terms 
of the solution of the kinetic equations. Not being able 
to present the results in the present paper, we note only 
that the foregoing notions concerning the saturation 
state remain unchanged. 

4. DIAMAGNETIC PROPERTIES 

In this section we consider the magnetic properties 
of a system in the saturation state in order to check 
on the presence of the Meissner effect. This analysis 
is stimulated by the presence of a gap in the quasi­
particle spectrum. Naturally, the presence of a gap 
still does not mean that the system acquires supercon­
ducting properties, since the appearance of these 
properties requires that the gap exist in a reference 
frame in which the electrons as a whole are at rest, 
and this system can move arbitrarily relative to the 
lattice (the current state). In our case the gap is 
rigidly coupled to the lattice and a stable current state 
is impossible. By the same token, the appearance of 
the Meissner effect is impossible. It should be recog­
nized, however, that the usual arguments that relate 
to the Meissner effect with the superconducting proper­
ties are valid for a closed system. In our case, the 
energy introduced into the system by the electromag­
netic wave can compensate for the energy dissipation 
due to the screening currents. Therefore the absence 
of the Meissner effect is not obvious beforehand. 

To consider the diamagnetic properties of the sys­
tem, it is necessary to calculate the average value of 
the current produced under the influence of the con­
stant (time-independent) magnetic field. Bearing in 
mind the fact that we shall also need in the future the 
response of the system to a weak electromagnetic field 
of frequency G, we present here the results for the 
general case, when the system is acted upon by a field 
with a vector potential 

A= :3 A(q)eiqr-i!lt, qA(q)=O. (23) 
q 

Following the transformation (10 ), the Hamiltonian of 
the interaction of the electrons and of the holes with 
the field (23) takes the form 

HeA = _e_ :31l(p + q- p')A(q) {P(1p, 1p')ap+ap, 
2mpp'q 

+ P(2p, 2p') b-p b::P' + P(ip, 2p')ap+ b!"p eioot 

+ P (2p, 1p') b-p ap• e-iootl e-i<>t' 

where the matrix elements 

(24) 

\ ;pr • -ipr iP'r • -ip•r (2 5) 
P(ip,jp')=.)d3r{e U;p(iV)e u;p•+e u;p(iV)e uwJ. 

The current Fourier-component operator is 

where 

A e ~ + 
j(Pl(q) =-- z., ll(p + q- p') {ap+ap, P(ip, 1p') + b-p b-p•P(2p, 2p') 

2m PP' 

Using standard perturbation-theory methods, we obtain 
the average value of the Fourier component of the cur­
rent in the first approximation in the weak field 

Ne2 e2 
j(q)= --A(q)+ -:3 6(p+q-p') · 

m 2m2 PP' 
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{ [A(q)P (ip, 1p')] UpV-p' -- [A(q)P(2p, 2p')]uP'v-p 
)( ---- .--"---'c--'---'-,-' _____:_:_______:_ 

e(p)+ e(p')- Q- i6 

x[P'(1p, ip') UpV-p,- p• (2p, 2p')up-V-p] 

[A(q)P(ip, 2p')] P'(1p, 2p')up2up,2 X . .. 
e(p)+ e(p')+ w- Q- i6 

[A(q)P(2p, 1p')]P' (2p, 1p')v:pv:p, 1 
X e(p)+e(p')-w.::__Q-16- f' (26) 

N is the electron concentration in a completely filled 
band. 

Putting 0 = 0 in {26), we obtain the current pro­
duced under the influence of the constant magnetic field. 
The expression for the current can be transformed by 
using the sum rule[7 J. Then, as q - 0, the last two 
terms in (26) add up together with the first term to 
make up the diamagnetic current corresponding to th!! 
electrons in the conduction band and to the holes in the 
valence band: 

j(q)= jCDl(q)+jCPl(q)=- (2n)e2 A(q)+·~ ~6(p+q-p') 
m 2m' PP' 

[A(q)P(ip, 1p')] UpV-p,- [A(q)P(2p, 2p')l Up·V-p 

X e(p)+e(p') 

)( [P'(1p, 1p')ZlpV-p,- p• (2p, 2p')Up•V-pj, (27) 

where n = 87Tpg /3 ( 21T )3 • 

In a semiconductor with quadratic electron and hole 
dispersion we have for the matrix elements (25) 

P(1p,1p')=p+p', P(2p,2p')=-(p+p'). {28) 

Substituting (28) in (27) and symmetrizing, we obtain 
for the paramagnetic current 

"(P)( ) = -~ "'(A(q)p)p (Up+q/2 V-ptq/2 + Up-qf2 V-p-q/2)2. (29 ) 
J q mJ. LJ s(p + q/2) + e(p- q/2) 

p 

We take the limit as q - 0 in (29 ). Taking into ac­
count the transversality of the potential A( q), we ob­
tain after some calculations 

2ne2 
j(Pl(q) lq=o=--A(q). 

m 

We see therefore that the parama~etic current j (P) 
cancels the diamagnetic current j (D). Consequently, 
there is no Meissner effect in the model under consid­
eration. The formal cause of the absence of the ano­
malous diamagnetism lies in the fact that the numera­
tor of (29) contains a plus sign, in contrast to super­
conductivity theory. This is apparently connected with 
the fact that the states of the particle and of the hole 
are correlated in the system. There is a definite 
analogy here with the appearance of anomalous proper­
ties following pairing in semimetals r a]. We note also 
that deviations from the dispersion laws (6) and (28) 
can uncover new possibilities. 

5. INTRABAND ABSORPTION 

The properties of a superconductor in the saturated 
state placed in a high-frequency field can be explained 
in the same manner as in the case of a constant field. 
The expression for the mean value of the current is 
given by {26 ). We confine ourselves here to the imag­
inary part of the current (26), which determines the 
absorption of the weak electromagnetic wave with 
frequency 0 « w by electrons and holes. This absorp-

tion will be called intraband absorption, and the cor­
responding absorption coefficient is defined by 

lmj;(qQ) = A,;(q)Ki;(qQ). {30) 

The expression for the absorption coefficient simpli­
fies if account is taken of the transversality of the 
potential (23) and if the most interesting case A(q) 
11 Ao is considered; we then obtain 

Ki;(qQ) = K(qQ)<\;, 

K(qQ)= -(2 e)Z,2 \ d3pcos296(e++ e-- Q)~( 1- ~+~--f.Z(p)) 
where rr -m. • 2 8+8-

S± = (; ± qvo sin e cos_<p, Vo = Po I m, 

s±=l'£±2+A.2(p), A.(p)=A.cose; (31) 
the z axis is directed along Ao, () is the angle between 
the momentum direction and the z axis, and cp is the 
azimuthal angle. 

We change over in (31) to new variables 
y = vo(P- Po), x =cos e, and t = coscp: 

• :1. :1. w 
2e2po3 r dt r r ( !:+~-- f.2z2) 

K(qQ)=·-- J---= _\x2 dx Jdy6(e++e--Q) 1--~---. 
~2m l'1 - t2 • E+B-

0 0 0 (32) 

In the absence of a gap (A - 0 ), formula (32) should 
describe the behavior of free electrons and holes hav­
ing a distribution function {19 ). Taking the limit as 
A- 0 and calculating the integrals, we obtain for qvo 
»o: 

2ne2 3rr Q 
K(qQ)=--~--. 

m 4 qvo 

We see therefore that in this limiting case the intra­
band absorption is determined by the Landau damping, 
which is not surprising, since in our approximation 
AT >> 1 or vo/A << v0T = l, i.e., the mean free path is 
much larger than vo/A. Further calculations are best 
carried out for certain concrete situations. 

We consider first the "London" case, when qv0 

<< 0. In a semiconductor, this approximation is of 
greatest interest, since the depth of the skin layer 
1i = (2To-Ot1 is usually large, owing to the relatively 
small conductivity of the semiconductor o-. Putting in 
(32) q = 0, we obtain after integration 

m 16 2A. ' 
K(Q)= (33) { 

~- 9~2 (_E_)J Q < 2A 

nef ( 21. ) 2 r.' x•dx 
~ 3rrJ Q>ZA 

-----;;; Q o l'1- z2(2A/Q)2 

In the last expression we have when 0 >> 2A 

K(Q)=~~(E=-)2 • (34) 
m 5 Q 

It is seen from (33) that when 0 Rj 2A the absorption 
coefficient reaches a maximum and decreases with de­
creasing frequency in proportion to o-3 • Such a K(O) 
dependence is due to the existence of a gap in the 
quasiparticle spectrum (12 ). Indeed, when 0 < 2A, the 
energy of the quantum is insufficient to produce a pair 
of quasiparticles. The difference between the absorp­
tion coefficient and zero (compare with £4 ] at T = 0) is 
due to the anisotropy of the gap A{p) (13). 

Calculation of the absorption for another orientation 
of the fields A and A0 , for example A 1 A0 , yields 

K(Q) ~ Q I 21., Q < 2A.. (35) 
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Consequently, the intraband absorption coefficient de­
pends strongly on the angle between A and A0 • The 
presence of anisotropy, and also the specific depend­
ence of K(U) on the frequency, give reasons for hoping 
that the effect will become distinctly observable ex­
perimentally, and that the magnitude of the gap ,\ will 
be determined. 

Let us consider further absorption in the "Pippard" 
case, when qv0 >> U. We present the results of the 
calculation for U < 2,\: 

ne2 3n2 ( Q )" Q K(Q)=-·-- -. 
m 16 2A. qvo 

This expression differs from (33) by the factor 
3U/qvo. 

(36) 

6. TUNNEL CURRENT THROUGH A "SEMICONDUC­
TOR IN THE SATURATED STATE" JUNCTION 

It is known[ 9l that a study of the gap in the spectrum 
of a superconductor is best carried out by investigating 
the current-voltage characteristics of tunnel junctions. 
In our case, the analog of the "metal-superconductor" 
junction is the "semiconductor-semiconductor in the 
saturated state" junction. The currents through such a 
junction is given, in accordance with the phenomenologi­
cal theory of tunnel junctionsr91 , by the expression 

t o mpolel 
l=C )a.r ~ rx(r)de, Px(e)= (37) 

-t _,, 2.:t2)'e'- i.2.r2 

where C is a constant, PN( E) is the density of the 
states of the semiconductor in the saturated state, and 
Vis the external voltage. Integrating in (37), we get 

porn VZ 
l=C---. (38) 

8:t '· 
We see therefore that the dependence of the current J 
on the voltage V becomes quadratic, and the value of 
,\ can be determined from the shape of the current­
voltage characteristic. 
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