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Possible modes of operation of injection lasers with inhomogeneous excitation are considered theoret­
ically. The conditions for the appearance of hard self-excitation are investigated. A periodic solution 
is found in the case of unstable stationary operating conditions. The experimental results are dis­
cussed. 

INTRODUCTION 

THE investigation of the dynamics of emission of semi­
conductor lasers has yielded important results. A hard 
self-excitation regime was observed, [ 11 self-synchro­
nization of the axial modes was realized/ 21 and a com­
plicated spike structure of the radiation pulse was ob­
served. [3, 41 Regular ultrashort light pulses were ob­
tained, [ 5 ' 61 and synchronization of the light pulses by 
modulation of the exciting current was realized. [ 71 

Most experimental results on the dynamics of semi­
conductor lasers were obtained with injection semicon­
ductor lasers whose excitation was not uniform over the 
area of the p-n junction. The construction of such a la­
ser is described, for example, in [Bl. The semiconduc­
tor laser constitutes a double diode, both parts of 
which, 1 and 2, are electrically insulated from each 
other and are coupled by a common resonator. By var­
ying the injection current it is possible to vary contin­
uously the gain (or absorption) in each part of the di­
ode. This makes it possible to trace the character of 
the dynamic processes in a large range of variation of 
the degree of nonlinearity of the absorbing (amplifying) 
part of the laser. 

Although extensive experimental material on the 
study of the dynamics of injection lasers with non-uni­
form excitation has already been accumulated by now, 
there is still no sufficiently complete theoretical de­
scription of the experimental results. 

The purpose of the present article is a theoretical 
investigation of the possible operating regimes of an 
injection semiconductor laser with non-uniform exci­
tation over the area of the p-n junction. 

1. INITIAL EQUATIONS AND ANALYSIS OF 
STATIONARY SOLUTIONS 

A theoretical analysis of the dynamic regimes can 
be carried out with the aid of rate equations, in which 
the probability of induced recombination is completely 
characterized by the position of the Fermi quasilevel. 
The use of the rate equation is justified up to times on 
the order of 10-12 sec, since the relaxation time of the 
interband polarization, determined under our condi­
tions by the electron-electron collisions, is of the or­
der of 10-13 sec. 

The rate equations for a semiconductor laser with 
non-uniform injection density can be written in the 

form 

Here S is the density of the number of photons in the 
resonator; Tr is their lifetime; Gi is the rate of in­
duced recombination per unit volume in the part of the 
diodes; y = V 2 /V 1 where V 1 and V 2 are the volumes 
of parts 1 and 2 of the diode; Ji is the density of the in­
jection currents; d is the diffusion length; T is the 
time of spontaneous recombination of the carriers. It is 
convenient to change over to differentiation with respect 
to the dimensionless time t' = t/T and to rewrite the 
system (1) in the form 

. 1 
11> = -[g, + W2- 1]11>, 

e 

n, = h - n,- cDg,, n2 = j2- n2- Qlg2, (2) 
~ ~~ ~ 

e =-; j; = ....:.__, g; =~I V1G;, 11> = -·S, i = 1, 2. 
't d ~I Vt 

It follows from experimental and theoretical inves­
tigations of strongly-doped GaAs semiconductor lasers 
that the radiative recombination is the result of elec­
tronic transitions from energy levels due to donor im­
purities (the so-called "tails" of the density of states) 
to levels of the acceptor bands. Since the holes, owing 
to their large effective mass, are concentrated in a nar­
row energy band, the gain is determined completely by 
the density of the energy levels near the bottom of the 
conduction band and by their population. The available 
experimental data show that the density of states near 
the bottom of the conduction band depends exponentially 
on the energy 

p = (Joexp(E/Eo), 

where the parameter E0 depends on the concentration 
of the donor impurities. If we assume that in the va­
lence band there is a narrow impurity level that can be 
described by a o -function, then the gain will have the 
following form: 

{[ E-Fi]-' 1} E 
G;=Apo 1+expkT -2 exp Eo' i= 1,2, (3) 

where A is a constant that depends on the temperature, 
Fi is the Fermi quasilevel in the conduction band, and 
E is the energy of a quantum of the amplified light. The 
number of electrons is connected with the Fermi quasi­
level by the relation 
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n; = Bp0 exp(F;/E0), 

where B also depends on the temperature. 
The gain (3) contains the energy of the light quantum 

E as a parameter. At specified positions of the Fermi 
quasilevels, the total gain is a maximum at a frequency 
determined by the equation 

{) 
oE (gl + yg,) = 0. 

When the positions of the Fermi quasilevels change, a 
change takes place in the frequency at which the gain is 
a maximum. Since in the optical band the Q of the reso­
nator is usually much higher than the Q of the emission 
line, the generation frequency is determined mainly by 
the natural frequency of the resonator, and the genera­
tion frequency pulling connected with the drift of the top 
of the spectral radiation line is small. For this reason, 
E in (3) can be regarded as a quantity independent of 
Fi.l> 

The stationary generation amplitudes are determined 
by the equation 

K($) = g1 (Ill) + yg2 (11>) = 1. 

Depending on the form of the function K(<I>), one or two 
stationary states with <I> > 0 are possible. If both parts 
of the diode amplify the radiation, then saturation causes 
the total gain to decrease monotonically with increasing 
field, and consequently the gain is equal to the loss only 
at one value of the number of photons in the resonator. 
On the other hand, if one of the parts of the diode ampli­
fies and the other absorbs, then the total gain can have 
a maximum and two stationary states are possible. In­
deed, when the number of photons decreases the Fermi 
quasilevel drops in the amplifying part of the diode, and 
rises in the absorbing part. If the drop of the absorp­
tion is faster than the increase of the gain when the 
number of photons increases, then the total gain in­
creases and subsequently, in sufficiently strong fields, 
the total gain decreases as the result of saturation. [ 91 

For the last two stationary equations (2) we can find 
the slope of the K(<I>) curve at arbitrary <1>: 

ax ( ag. ag. ) 
dill = - g1 8n1 't! + y,l!, 8n2 'tz ' 

og; 
-rc• = 1 + -$,, i = 1,2. 

on; 

If the ratio of the currents h and jz is such as to 
satisfy the inequality 

(4) 

(5) 

and K(O) :5 1, then a hard self-excitation regime exists 
in the system (2). 

Assume that the system has arrived at a state of the 
type <I>a, where dK/d<I> < 0. Experimental investigations 
show that the radiation intensity of a semiconductor la­
ser with non-uniform excitation, at a definite ratio of 
the injection currents in the parts of the diode, has the 
form of regular light pulses, i.e., the regime of genera­
tion with a stationary value of the amplitude is unstable. 

I) At appreciable frequency shifts of the maximum gain, the genera­
tion frequency may jump from one mode to another. 

Linearizing the system (2) near the equilibrium posi­
tion and investigating the condition of these equations, 
we can obtain the following conditions under which the 
stationary solution, n~, ~' <1>0 (dK/d<I>I <1>=<1>' < 0) is un­
stable: 

(6) 

Here Tb the gain gb and the derivatives agi/CJni are 
taken in the stationary state. 

It is seen from (6) that if both parts of the diode am­
plify the radiation (gi > 0), then the stationary genera­
tion regime is always stable (the derivatives Clgi/Clni 
are always positive). The condition (6) can be satisfied 
only if either g1 < 0 or ga < 0, i.e., to realize the con­
ditions of the spike regime of laser operation[ s, 101 one 
of the parts of the diode should absorb and the other 
should amplify the radiation. 

2. REGIME OF PERIODIC PULSATIONS OF 
RADIATION INTENSITY 

If the ratio of the currents h and ja is such that 
condition (6) is satisfied, then the stationary solution 
turns out to be unstable and radiation-intensity oscilla­
tions are produced in the system. In this case it is im­
possible to find an exact analytic solution of the three 
nonlinear equations. But in the case when E << 1 it is 
possible to obtain sufficiently satisfactory approximate 
solutions. This is connected with the fact that when E 

<< 1 large changes in the number of photons occur al­
ready at small deviations of the number of electrons 
from their stationary values. To describe the regime 
of radiation-intensity pulsations with sufficiently large 
depth modulation, the quantities gi (ni) can therefore be 
expanded in powers of ~ni = ni - n~, where ~ni is the 
deviation of the number of electrons from its stationary 

values nl· If the akgi(ni)/onf exist and are continuous 
at the point ni, then 

og;" ~ 1 {)kg;" 
g1 (n;)=g;0 +-~n1 + ~ ---~n1~ (7) 

' ani. k=2 kl anlt ' 

All the derivatives in (7) are calculated at the point n~. 
Recognizing that 

g1(n1") +yg2 (n2°) = 1; j; = n; +ll>0g;(n1°), 

we can write the system (2) in equivalent form: 

00 a•g·" ~n·k 
M· = g·"ll>0(1- q:)- ~n· -ll>0cp ~ --' -'- $ = ll>0<r i = 1 2. 

t 1 1 k=i anik kl ' ' ' 

If we go over here to differentiation with respect to the 
time t" = t' / ..fE and introduce the variables x = ~n1/IE 
and y = ~na/..fE, then (8) takes the form 

. ( ag.o {}gz" ) ~ e<k-1)/2 ( {)kg.• f)kg.• ) 
q> = fJn1 x + y fin, y q> + !1/~o !1/1 = cp .?J,-k-1- fJn1" x• + y fJn2k y" ; 
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In the right side of the system (9) we have introduced 
formally a small parameter JJ., in order to visualize 
the smallness of the functions fi. Indeed, the dimen­
sions of the injection semiconductor lasers usually 
amount to 10-1-10-2 em, i.e., Tr = 10-11 -10-13 seci and 
for gallium -arsenide diodes the lifetime T is "' 10 1 sec 
and E "' 10-2-10-4 • The functions fi are proportional 
to powers of the small quantity E, and one can there­
fore expect that at sufficiently small E the solution of 
(9) to be close to the solution of the system 

:i=g10<IJ0(1-qJ), y=g20<IJ0(1-q>), (10) 

which is obtained from (9) at J.i. = 0. 
The system (10) is conservative and has two single-

valued analytic integrals of motion: 

1 ( og1° og2• )• - -x+y-y -[illo2 lnq>-q>]=wo2Ch 
2 on, onz 

( og,0 ogz0 ) 
gz0X- g,0y = Cz, Wo2 = - + y-•gz0 <IJ0. on, onz 

(11) 

On the (cp, (p) phase plane, Eqs. (10) define closed phase 
trajectories 

(12) 

which correspond to periodic time variations of the pho­
ton numbers <I> = <1>0 cp. The approximation (10) is valid 
under the condition that EC1 << 1 and it is assumed 
henceforth that g1(0) + yg2(0) > 1.2> 

At small values of JJ., the system (2) is close to (10) 
and we can therefore expect the periodic-radiation-in­
tensity pulsations that appear when the stationary state 
is unstable to be described by Eqs. (10). 

The periodic motions of the system (9) are generated 
by those closed integral trajectories (11), for which 

ST ( oc, oc, oc, ) II 
K,(Ct,Cz)= 

0 
· fii!t+----a;;h+ayf• dt =0, 

ST ( oc. oc. oc. ) II 
Kz(C~oCz)= 

0 
a;t'+axh+ay!a dt =0, 

(13) 

where the integral is taken along the curve 2 (Cl, C2) 
belonging to the two-parameter family of closed curves 
(11), and T = T(C1, C2) denotes the period of the motion 
in the generating system (10).[111 

The periodic solution of the generating system is 

(14) 

where cp(C1) is the periodic solution of (12) with the in­
tegral of motion cl, and 1/! = (p/cp. All the parameters 

2>The condition g1(0) + -yg2(0) > 1 can be replaced by the less 
stringent one g1(<1>min) + -yg2(<1>min) > 1, where <I>min is the smallest 
value of <I> in the pulsation regime. 

of the light pulses, namely duration, repetition frequen­
cy, and depth of modulation, are determined by the quan­
tity C1.[121 For the most interesting case of pulsations 
with large depth of modulation, when C1 >> 1, it is pos­
sible to obtain from the simultan~ous solution of (13), 
with the aid of (14), 

(15) 

Expression (15) is approximate, since in the calcu­
lation of C1 we have retained in (13) only the first 
terms in powers of E1/ 2, leading to the existence of a 
limit cycle. It is seen from (12) and (15) that a periodic 
solution for the radiation intensity exists only if the 
following condition is satisfied 

(6a) 

This condition coincides, accurate to terms "'E, with 
the condition for the instability of the stationary solu­
tion (6).3 > An investigation shows that the resultant lim­
it cycle is stable. 

The process of generation of light pulses proceeds in 
the following manner. When 0 ::S; t ::S; t1 = ...f2C1 T Tr/w 0, a 
relatively slow development of generation takes place, 
in which the active particles accumulate in the amplify­
ing part and bleaching takes place in the absorbing part. 
The number of photons changes from <~>min = <1> 0 

x exp - C1 to <1> 0 in accordance with the law 

«ll(t) = «ll"exp( ;~:.·- c,). 
Then, after the absorbing part is bleached, a sharf, in­
crease takes place in the amplitude, to <~>max = <I> CH 
and the energy stored in the amplifying part is emitted 
in a narrow pulse. The time behavior of the radiation 
pulse is described by the following expression: 

1/ c,wo2 
<ll (t) = «ll"C1 ch-2 V -2- (t2 + t1 - t); 

't'tr 

The duration of this section, when the number of photons 
ChangeS from cp = <1> 0 to <l>maX = <1>° C1 and then again tO 

<1>0 , is 2t2 ~ ..J 2T Tr/C1 w~ ln (4C1). Consequently, the 
pulse repetition period is 

(16) 

and the pulse duration at half height is 

To= 2,51/ 'tr't. (17) 
Wo V C1 

Thus, knowing the value of C1 from (15), we can 

3>When the system (13) is solved with greater accuracy with respect 
to the powers of ev., the condition for the existence of the limit cycle 
coincides with condition (6). 
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find all the characteristics of the automodulation proc­
ess produces when the stationary state is unstable. 

It should be noted that when the depth of modulation 
of the radiation intensity is small, C1 is small, the 
pulse repetition period depends little on Cu and its 
value, as follows from (12), is 

2n­
T=-l'nr . 

.IDo 

If the pulsations have a large depth of modulation, 
then it follows from (15), (16), and (17) that the dura­
tion of the pulses at half-height is determined by the 
lifetime Tr of the photons in the resonator, and the 
distance between them is determined by the time T of 
spontaneous recombination of the carriers, i.e., the Q­
switching regime is realized in this limiting case. 

3. CALCULATION OF THE GENERATION REGIMES 
IN A SEMICONDUCTOR LASER FOR THE CASE 
y = 1 

We present a concrete calculation for a semiconduc­
tor laser with non-uniform excitation in the particular 
case when y = 1. It is convenient to normalize (2) in 
such a way that n1, 112, h, and ja are equal to the ratios 
of the corresponding quantities to their threshold val­
ues in the case of uniform excitation, so that for exam­
ple ja is the ratio of the current density in the second 
part of the diode to the threshold current density in the 
same part in the case of uniform excitation. In this 
case, the system (2) takes the form 

. 1[ X ( n,-(y2-f)x n.-("}'2-1)X) 1].., <1>-- + - w 
- e 2(y2-1) n1 +(l"2-1)x n•+Cl'2-1)x ' 

(18) 
x n; -(y2--1)x . 

--=-- -'---'-'--=--'--11>, ! = 1, 2, 
2(y2 -1) n; +0'2 -1)x 

where x = exp [ (E - E)/kT], E is the frequency at 
which the total gain is maximal in the case of uniform 
excitation, and E is a constant quantity independent of 
the injection currents h· Since in gallium arsenide dif­
fusion diodes at a donor concentration 1018 em-s the 
doping parameter is E0 ~ 8 meV, and at nitrogen tem­
perature we have kT = 6. 7 meV, it was assumed in the 
derivation of (18) for simplicity that E0 ~ kT. The total 
gain is maximal for a light quantum with energy 

E = E + 1/2kT In n1n2. 

Since many modes fall inside the emission line, the 
mode that is excited is the one closest to the frequency 
of the maximum gain. We shall henceforth assume that 
the Q of the resonator is sufficiently high compared 
with the Q of the radiation line, and neglect the pulling 
of the generation frequency towards the top of the radia­
tion line. Estimates show that, up to appreciable inho­
mogeneity of the excitation, we have (E- E)/kT << 1, 
and we can therefore put x = 1 in (18). 

It follows directly from (18) that the threshold curve, 
i.e., the curve on the (h, j2 ) plane on the points of which 
the self-excitation conditions are satisfied, is given by 

1 1 ----==---+ =l'2. 
it+Ct'2-1) h+(l"2-1) 

0 2 5 fJ fO j 1 

FIG. I. Results of numerical solution of the system (18): threshold 
curve SOS', boundary POP" of the region of existence of the hard re­
gime, 00' ,010' h and 0 20'2 - limits of the instability regions at differ­
ent values of the parameter E for a double diode with 'Y = I (e = 10-2 

for the curve 0 20'2, f = 4 X 10-3 for 0 10' h E = 0 for 00'). The axes 
represent the ratios of the current density in the parts of the diodes to 
their threshold values in the case of uniform excitation. 

In the case of uniform excitation, h = j2 = 1. If the cur­
rent density in one part of the diode is h < h = ( ..f2- 1), 
then this part of the diode absorbs the radiation. 

Figure 1 shows part of the threshold curve SOS' for 
h 2: j2 • In the region of currents lying below the line 
PP' (:k = j0), part 2 of the diode operates in the regime 
of nonlinear absorption of the radiation. The solution of 
(5) is represented by the curve POP". For all points j1 

or :k lying below the curves POP", the total gain g1(<l>) 
+ g2 (<l>) as a function of the photon number has a maxi­
mum. The limiting curve for the existence of the hard 
regime, POP", crosses the threshold curve SOS' at the 
point 0, at which h = 5.01 and j2 = 0.399. If the point 
(j 1, j2 ) moves along the threshold curve SOS', then the 
only stationary solution of (18) ahead of the point 0 is 
<I> = 0. Beyond the point 0, a hard regime of generation 
is established. Small deviations from the state ci> = 0 
increase, and the system goes over into the state <1>0 , 

where dK/dci> < 0. With increasing degree of inhomo­
geneity of the excitation, the slope of dK/dci> I <I>= <I>' in­
creases, and consequently the stationary value of the 
generation amplitude <1>0 , into which the system goes 
over jumpwise from the state ci> = 0, increases. If the 
point (j~> j2 ) lies below the threshold curve, then the 
state ci> = 0 is stable against infinitesimally small de­
viations, since the initial gain is smaller than the loss. 
Since the absorption decreases more rapidly than the 
gafn at the points (ju j2) lying below the curve POP", 
generation can be obtained by introducing into the reso­
nator a definite number of photons from the outside. 

The curve OS" represents the simultaneous solution 
of the system (18) and of the equation 

dK I - -0 
d<P <I>~<I>'- • 

It is impossible to obtain a generation regime for all 
the points (h, j2 ) lying below the curve OS", since for 
these points the maximum value of the total gain as a 
function of the number of photons is lower than the loss 
level. Inasmuch as the total gain on the curve OS" is 
tangent to the straight line corresponding to the level 
loss, the distance between the curves OS' and OS", at a 
fixed value of the current h, determines the width of 
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the hysteresis of the radiation power of the semiconduc­
tor laser with non-uniform excitation. An estimate of 
the width of the hysteresis, obtained from Fig. 1, coin­
cides with the results of l 131 where power hysteresis 
was experimentally observed. 

Thus, for currents lying above the curve SOS", there 
exists for the system (18) a stationary solution n~, ng, 
<I> 0 for which dK/d<I> I <I>= <I>' < 0. 

If condition (6) is satisfied, then the stationary gen­
eration regime turns out to be unstable, and pulsations 
of the radiation intensity appear, with pulse parameters 
determined by (15), (16), and (17). Figure 1 shows the 
regions of instability of the stationary generation re­
gime for different values of the parameter E. The limit 
line 00' corresponds to the value of the parameter 
E = 0. All the points (jl> h) lying below 00' are poten­
tially unstable, since it is always possible to find such 
a value of E* for which the stationary state is stable if 
E > E * and unstable if E < E*. The line 010~ corre­
sponds to the value of the parameter E = 4 x 10-3, and 
the line 0 20:; to the value E = 10-2. If, for example, 
E = 4 x 10-3 and the point (h, h) moves along the thresh­
old curve, then the hard generation regime is stable 
ahead of the intersection of SOS' with 010~, and a con­
stant generation amplitude is established after the 
transient process; beyond the intersection point, the 
stationary regime is unstable and the radiation inten­
sity is modulated in amplitude. If, for example, E = 10-2 
and the point (jH h) is near the threshold curve, then 
the produced hard generation regime is stable. 

The expressions for the light-pulse parameters con­
tain the quantity S1 0 = W 0 ( Tr T) - 1 / 2 , Which iS the frequen­
cy of pulsations with small depth of modulation. Fig­
ure 2 shows a plot of w0 against the injection current 
j1 for different fixed values of the current j2 in the ab­
sorbing part of the diode. The range of variation of w0 

is bounded from above, for if a straight line j2 = const 
as drawn on Fig. 1, then it intersects the instability 
boundary of the stationary state and falls into the region 
of stable generation. The dashed curves in Fig. 2 de­
termine the upper limit of w0 for the values of the pa­
rameter E = 3 x 10-3 and 5 x 10-3 , respectively. With 
decreasing resonator Q, the range of variation of the 
pulsation frequency increases. 

The light-pulse parameters can be determined by 
calculation with the aid of relations (15)-(17); for ex­
ample, for j2 = 0.362 and h = 7 .5, the calculation of 
(15) using the stationary values of n~, ng, and <I> 0 

yields EC1 = 0.02, i.e., the condition for the applicabil­
ity of the approximation (10) is satisfied. When E< 10-2 , 

condition (6a) differs little from condition (6), and 
therefore (15) is a good approximation for the determi-

w, 
0.5 

0 L___L5 _ __J__c:-ll ---'--l}cil-J, 

FIG. 2. Dependence of the fre­
quency w 0 on the current density in 
the amplifying part of the diode for 
different values of the current densi­
ties in the absorbing parts of the 
diode. Curves: I - j 2 = 0.374; 2 -
j2 = 0.354; 3 - h = 0.334; 4 - j2 = 
0.314. 

nation of Cp The radiation-pulse duration at half height 
is T0 = 2 x 10-10 sec, the repetition period is T = 3 
x 10-9 sec at T = 10-9 sec and Tr = 2 x 10-12 sec. With 
increasing initial excess over threshold, the repetition 
period decreases. 

4. DISCUSSION OF EXPERIMENTAL RESULTS 

The developed theory is capable of explaining the 
variety of dynamic regimes of double-diode operation. 
As seen from Fig. 1, in a wide range of injection cur­
rents the double diode operates in the stationary re­
gime ~ith "soft" onset of generation. If the excitation 
is highly nonuniform, the generation amplitude is es­
tablished jumpwise. The hard regime of a double diode 
occurs as j0 = 5j0 and j2 = 0.4j0 , where j0 is the den­
sity of the threshold current in the case of uniform ex­
citation. 

Figure 3 shows an oscillogram of such a process, 
photographed from the screen of an electron-optical 
converter. The transient process is followed by estab­
lishment of a stable stationary generation amplitude. 
This regime corresponds to the section of the threshold 
curve SOS' (Fig. 1) prior to its crossing the curve 
bounding the instability region (for example, 010~). At a 
different ratio of the injection currents, a "hard" onset 
of generation is observed, accompanied by undamped 
periodic pulsations of the radiation intensity (Fig. 4). 
Stable periodic pulsations occur almost at the very 
threshold of generation. The "hard" onset of periodic 
pulsations corresponds to the points h and h near the 
threshold curve in the region of instability of the hard 
stationary generation regime, for example the points 
near the threshold curve SOS', lying below the curve 
010~. 

If the initial ratio of the injection currents is such 
that the stationary regime of generation is stable, then 
the point (j 1 h) can fall into the instability region when 
the injectio~ currents are varied. Such an excitation 
process corresponds to a "soft" onset of the spikes. 
Figure 5 shows oscillograms illustrating the soft re­
gime of onset of pulsations. The oscillogram of Fig. 5a 
corresponds to stable stationary generation regime, 

FIG. 3. Transient process of establishment of stable generation in 
the hard regime of self excitation. Sweep duration I 0 nsec. 

FIG. 4. "Hard" onset of periodic pulsations of radiation intensity. 
Sweep duration I 0 nsec. 
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FIG. 5. "Soft" onset of pulsations: a- stable regime of generation, 
b -oscillogram shown "soft" onset of pulsations from the stationary 
regime (Fig. Sa) when the injection currents change by 10%. 

while that of Fig. 5b to the regime of periodic pulsa­
tions that appear when the injection currents are 
changed. 

Further refinement of the example considered in 
Sec. 3, namely a more numerous allowance for the de­
pendences of the rate of induced recombination of the 
temperature and of the generation frequency on the in­
jection currents, as well as allowance for the bleaching 
of the absorbing part of the diode by the spontaneous 
radiation from its amplifying part, will make possible 
a quantitative comparison of theory with experiment in 
a wide range variation of the temperature and of the 
degree of inhomogeneity of the excitation of the double 
diode. 

5. CONCLUSION 

Periodic generation of light pulses is possible only 
in the case of strong inhomogeneity of excitation, when 
the injection current in one part of the diode is much 
smaller than the injection current in its other part. In 
this case, in the amplifying part, all the levels partici­
pate in the generation are almost fully populated, and 
the gain varies slowly when the number of electrons is 
changed. In the other part of the diode, the states par­
ticipating in the absorption of the light are little popu­
lated, and therefore the rate of change of the absorption 
with increasing number of electrons greatly exceeds the 
rate of change of the amplification, i.e., a~/illl:! >> Clg/ 
an1• When generation sets in, the absorption decreases 
as the result of optical pumping more rapidly than the 
decrease of the gain, i.e., the absorbing part is a readily 
saturable absorber, and the mechanism of light-pulse 
generation is analogous in many respects to the case of 
solid-state lasers with saturable filters. 

The advantages of semiconductor lasers, namely 
their small linear dimensions, low inertia, and high ef-

ficiency of conversion of the electric -current energy 
into coherent radiation, makes it possible to use these 
lasers for optical information processing. In l 141 it was 
proposed to use semiconductor lasers for ultrahigh­
speed logic elements. Different regimes of the semicon­
ductor injection laser with non-uniform excitation make 
it possible to use this laser either as a timing-frequen­
cy generator with a light-pulse repetition frequency 
from 108 to 1010 Hz, or else as a memory element with 
operating speed shorter than 10-10 sec, and small 
changes of the current in the absorbing part make it 
possible to change over from one regime to another. 

The authors are grateful to V. V. Nikitin, V. D. Sa­
moilov, and A. S. Semenov for supplying the experimen­
tal results. 
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