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The nonlinear nonstationary problem of excitation of quasimonochromatic resonator oscillations by a 
density-modulated charged particle beam is considered. Equations are derived for the dependence of 
the field amplitude and phase on time in the case when the flight time is small compared with the char­
acteristic time of growth of the field. The maximal values of the amplitude are calculated in the cases 
of strong and weak beam modulation. 

J. AS is well known, the linear theory of plasma-beam 
interaction has by now been thoroughly worked out, so 
that the main problem is the investigation of the nonlin­
ear characteristics of this interaction.r 1 J The greatest 
progress in this direction was attained with the aid of 
the quasilinear theory. r 2 J However, the applicability of 
the latter is limited, in particular, by the requirement 
that the characteristic distance ~w ::>:J V0 ~k (V0 is the 
beam-particle velocity) between the natural frequencies 
of the plasma be small compared with the growth incre­
ment E of the installations (E >> ~w ). The fields ex­
cited in this case have a relatively broad frequency 
spectrum consisting of a large number of oscillations 
with independent random phases. Such fields are of in­
terest for a stochastic acceleration and heating of the 
plasma. At the same time, in many applications[ 3 J it is 
necessary to obtain regular electromagnetic fields, i.e., 
fields with fixed phases. 

The nonlinear theory of the interaction between a 
beam of charged particles and regular waves has been 
the subject of r4 - 8 J. The closest to the experimental 
conditions is the problem in which account is taken of 
the injection of the beam into a plasma layer from the 
outside. It is precisely in such a formulation that the 
Cerenkov amplification of longitudinal waves was inves­
tigated in r SJ. It was assumed there that the stabiliza­
tion is ensured by the dependence of the slowing-down 
properties of the plasma on the field amplitude, and that 
the reaction of the field on the motion of the beam par­
ticles is insignificant. 

In this paper we consider the nonstationary problem 
of nonlinear Cerenkov interaction of an injected exter­
nal charged-particle beam with a slow-wave resonator, 
under conditions when the field in the resonator is regu­
lar, and the growth of its amplitude is stabilized by the 
reaction of this field on the motion of the beam parti­
cles. 

2. The spectrum of the oscillations excited by the 
beam in the resonator can be regarded as discrete if 
the growth increment E of the oscillations is small 
compared with the distance ~w ::>:J V0~k between the 
natural frequencies of the resonator. Since ~k ~ 1T !L, 
where L is the length of the resonator, it follows that 
the condition E << ~w is equivalent to the requirement 
that the time of flight T = L/V0 be small.compared 

with the characteristic growth time T g ~ E - 1 of the 
field of the resonator. In such a case, an appreciable 
increase of the field amplitude in the resonator can be 
ensured only by accumulating in the resonator the en­
ergy lost by the consecutively entering beam particles. 
To this end it is necessary that the Q of the resonator 
be sufficiently high (Q >> 1). 

The quasilinear theory of the effect of accumulation 
of the energy of the longitudinal oscillations excited in a 
plasma half-space by a beam continuously injected from 
the outside has been developed in r 9 ' 10 l. We consider 
below this effect for a thin (E T << 1) resonant layer in 
which regular oscillations are excited. 

3. The self-consistent system of equations describ­
ing the interaction of the beam with the resonator, un­
der the conditions considered here, consists of the equa­
tion for the field and the equations of motion in terms of 
the Lagrange variables Z( T, to) 

a'Eu aE 11 a fii2+ 2Q-•QTt+ Q'Eu = -4natjb, (1) 

h==_!__6(r) r dt0/(to)6[z-Z(T,to)]Z(T.to), (2) 
2:rtr J 

a mot(t", to) 
m p(1:, t0) = eEu(Z(r, to); t(1:, to)]. p(r, to)== [i- Z'/c'J''• (3) 

The dot denotes here the derivatives with respect to 
T at a fixed instant of entry to; the beam is assumed 
focused in a radial direction; n is the natural frequency 
of the resonator, for which Vph = V0 , where V0 is the 
velocity of the beam particles at the entrance to the 
resonator. Since effective excitation of one resonant 
oscillation can take place only in the case of a small 
thermal scatter, we shall neglect this scatter through­
out, assuming the beam to be modulated only in density. 
In this case the particle current I(t0) at the entrance to 
the resonator is periodic in time. From the equality 
Vph = V0 it follows that the current-modulation fre­
quency WM is equal to the resonant frequency n of the 
oscillation under consideration. 

It should be noted that the system of equations in 
terms of Lagrange variables (3) is equivalent to the 
system of characteristics of the kinetic equation for the 
beam particle distribution function 

&f &f of --- + v-,- + eE-_- = 0, o·t oz op 
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so that the solution of (3) makes it possible to find, in 
the kinetic approximation, the amplitude of the field ex­
cited by the beam. 

Assuming the right side of (2) to be known, we can 
integrate (1) and find the time dependence of the ampli­
tude E(t) of the field of the sought oscillation 

En(r, z, t) = E(t) cos knz<D(1), <D(O) = 1. (4) 

Recognizing that the field amplitude in the resonator 
at the initial instant t = 0, when there are no particles 
in the resonator, is zero, we get 

' 
F(<)= -2r• .\ rh'exp[-(<-•')Q--1]cos(r-T') .\ d<"¢(<")cosk11Z(-r',-r"), 

0 >>(<') (5) 

where we have introduced the dimensionless variables 

S == .\ <D2 (r)rdr, /(t) = / 01jl(t), lo == l(t), 

and the dimensionless function <P(t) describes the form 
of the current at the entrance to the resonator. Integra­
tion with respect to T" in (5) at each fixed instant T 1 is 
carried out only over trajectories that do not go outside 
the resonator (0 < Z(T', T") < L). 

Reversing the order of integration with respect toT 1 

and T" in (5), we obtain 

~ 9~? 

F(-r) = - 2fl ~ d-r'ljl(<') exp [- (-r- -r')Q-1] ~ d," exp[T"Q-1] 

0 0 

X cos[-r- •' + 1'1 (<", -r')], 
(6) 

where ® (T') is the time needed for the particle entering 
the resonator at the instant T' to traverse the resona­
tor, and 

is the interaction-induced deviation of the trajectory of 
this particle from the straight line (in terms of the var­
iables Z and T") corresponding to the motion without 
the field. 

Relation (6) together with the equations of motion (3) 
is a system of integro-differential equations of the field 
in the resonator. It follows from (6) that at each instant 
of time the field in the resonator is determined by the 
result of the interaction of all the previously passing 
particles. In particular, the increments of the ampli­
tude R and of the phase cp of the field, which are con­
nected with the function F by the relation F(T) = -R(T) 
x cos [T- cp(T)], taken over one period of the modula­
tion, are determined by the following expressions 

+rc d(n,'t') 

dR 1 1 cos[x+<P(n)-•']d:~;d, 
L'!R~-=fl•_\1~(-r') J •; 

dn -~o 0 L'l[R(n),rp(n),-r',x] 
(7) 

+JT :i{n.,"t') 

1'1 'f ~ ~~ = fl~ ~ d,' ljJ ( <') ~ ~in [x + 'EJ/l)_=_-r'] dx; 
dn R(n) __ , "L\[R(n).<p(n),T',:r] 

(8) 

R(O) = rp(O) = 0, Q-1 = 0, 

where Jl* = Jl !21r, and d(n, T') is the displacement, at 
the exit from the resonator, of the particle that entered 
the resonator at the instant of time T 0 = 2rrn + T'. When 
we replace the effective values of the amplitude and 
phase in the right sides of (7) and (8) by the average 

values, we use the assumption that R and cp vary slow­
ly in time, which is equivalent to the requirement that 
the parameter q = E T be small (q << 1). As will be 
shown below, the condition q << 1 makes it possible to 
integrate the equation of motion and to find equations 
for the field in the resonator. We shall examine this 
problem in detail in two limiting cases, of strong and 
weak modulation of the current exciting the resonator. 

4. Let us consider the case of a strongly modulated 
beam (a sequence of charged bunches <P(T) = o(T)). 

In this case each bunch excites the resonator with its 
Cerenkov radiation. Since the repetition frequency of the 
bunches is equal to the natural frequency of the resona­
tor, the fields of all the bunches turn out to be coherent 
at the initial stage of the interaction, as the result of 
which the amplitude of the field in the resonator in­
creases linearly in time. With increasing field ampli­
tude, its reaction on the motion of the bunches in­
creases. To take this effect into account, it is neces­
sary to find the first integrals of the equations of mo­
tion of the bunches: 

'6. 1 
---------= --R(n)cos[<r(n)+ 1'1], (9) 
[1-Bo2 (1+1'1} 2J'i' 2 

which do not depend on the entry phase and can be eas­
ily integrated in the limiting cases of nonrelativistic 
beams ( {3~ << 1) and relativistic (y = (1- {3~)- 1 1 2 >> 1) 
beams. 

In the nonrelativistic case, multiplying both sides of 
(9) by ~ and integrating with the initial condition 
~(A= 0) = 0, we get 

Li = - VR(n) {sin <r(n)- sin ['Jl (n) + 1'1]}'1,_ (10) 

Substituting this expression in (7) and (8) we obtain 
after straightforward but complicated algebraic trans­
formations a final system of equations for the ampli­
tude and phase of the field in the following form:l HJ 

dP -
dn = 3 V2 fl• sins cos a(P, £), 

d£ fl• P--= ----=.[2/,;(k, a)- 1-•;,(k, a)], 
dn V2 

(11) 

where 

:.1/2 

l,(k, a)==\ d:c[1- k,;,\2 .1:]-', 

and the dependence of a on P and ~ is determined by 
the following transcendental equation that follows from 
the condition Z [ ® (T '), T'] = L: 

I (k ) -;;; "P'i-[ s-arcsii<(sinssinu)J--'1, ,a -l"n'' ··· 1 +------, - - . 
nN 

(12) 

The maximum of the amplitude and the correspond­
ing value of the phase can be found by equating the right 
sides of (11) to zero. We thus obtain 

amax = --n/2, 2E(km) -- K(km) = 0, 

k;;~ =sin Sm = 0.826, £, ~ 1.14, K(k,) ~ 2.32, 
(13) 

where E and K are respectively complete elliptic in­
tegrals of the first and second kind. 

Substituting these relations in (12), we obtain a final 
expression for the amplitude of the field at the maxi-
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mum: 

R _ 2K2 (km) 
max- n2N2 [1 + 2sm/nN]2 

(14) 

or in the dimensional variables 

moVo' 8 K2(km) 
Emax = 2leiL nN-[i+Zsm/nNF" 

(14a) 

The physical meaning of the result is as follows: at 
large field amplitudes, the phase shift of the particles 
under the influence of the decelerating field is so large, 
that the particle enters the accelerating phase of this 
field, corresponding to the region of negative a. The 
rate of growth of the field amplitude is equal to zero 
when the field amplitude is so large that the particle 
has time to execute half the phase oscillation within the 
time of flight (amin = -rr/2). Putting QphT = rr, where 

nph is the frequency of the phase oscillations and T is 

the time of flight, we get 

moVo2 n 
Emax= 2leiL N' (14b) 

which coincides, apart from a numerical factor, with 
Eq. (14a) obtained from an analytic solution of the prob­
lem. 

It must be emphasized that the field Emax is ex­
cited as the result of Cerenkov loss of a large number 
of bunches, each of which loses only a fraction of its 
energy. The maximum energy loss corresponds to a 
field approximately one quarter as large as Emax· In 
such a field, the particle executes one quarter of the 
phase oscillations during the time of flight (Qph T 

= rr/2). 
The effective pulse duration necessary to obtain 

maximum field (14) can be estimated with the aid of (11): 
nm ~ RU.2 /3/2 11*. It is seen from this relation that 
during the linear stage of the interaction the field am­
plitude increases in proportion to n213• The reduction 
in the field growth rate, compared with the initial stage 
in which the field amplitude increased in proportion to 
the number of bunches passing through the resonator, is 
due to the loss of coherence of the interaction between 
the bunches as the result of the deceleration under the 
influence of the field. 

Knowing the total energy of the resonator at the max­
imum and the corresponding pulse duration, let us esti­
mate the efficiency of the system as a ratio of the field 
energy in the resonator to the energy of the particles 
passing through it: 

rt == W1 I W r"" 1 IN, 

where Wf = E~ rrSL/8rr is the field energy and W r 
== rri0Q- 1nmm0V~ is the energy of the particles passing 
through the resonator. We have omitted here a numeri­
cal factor of the order of unity, since we have deter­
mined only the order of magnitude of the number of par­
ticles nm. 

As seen from this estimate, the efficiency of the gen­
erator depends only on the relative length of the reso­
nator. 

5. Let us consider a relativistic modulated beam 
( y » 1; 1/J(T) = O(T)). 

In this case the first integral of the equation of mo-

tion (8) is given by 

tl (R, q;, ~) =- '/w-' {[x(2 + x) ]'l'{x'l' + (2 + x) 'i,j2}, 

x(R,<p,M == 1hvR[sin<p-sin(<p+~)]. (15) 

Substituting this expression in (7), we obtain the fol­
lowing equations for the amplitude and phase of the 
field 

R'f, dd: = 8w, { 1- exp [ -2 Arsh ; ]}. (16) 

d' ?' 1 - 2 sin'S sin2 X {2 + ;<j-'hdx 
R3.'2 ___§ = - 2y3f2J1• .) 

dn ~ ( 1- sin2 £sin' x) •;, [~h + (2-+--;;-)•/,]2' 

x (R, !',, x) == yR sin2 \; cos2 x, (17) 

where ~ = rr /4 + <fJ /2, and the dependence of a on ~ and 
R is determined by the equation 

2 Jh 
nN +!',-arc sin [sin!', sin a]=-"-,- · 

Rh 

r' dx(1- sin2 !',sin2 x)-'h 
· .l (2+x)'b[x'1'+(2+x)'h]' · 

a. 

(18) 

It is easy to show, in analogy with the preceding 
case of the nonrelativistic beam, that when y 2 << N the 
maximum amplitude differs from (14) only in the value 
of the longitudinal electron mass: 

mnc' 4 K2 (km) 
Emax = TeT£ nN [1 + 2!',,./nN]", mn == mov'. (19) 

In the ultrarelativistic case, y 2 >> N, it is easier to 
determine the amplitude of the phase of the field at the 
maximum, because the largest contributions to the inte­
grals (17) and (18) are made under these conditions by 
the values of x close to ± rr I 2. Integrating, we obtain 

Umax = -Jt /2, Smax=nl4 (((lmax=O), 

, 2 y 
En1ax =--;- N -;- 1/ 2 • 

or, in dimensional units 

4moc2 y 
E'max = -:-:-:-:-:-:___,_,:-:-c_ 

lel£(1 + 'hN) 
(20) 

Thus, accurate to a numerical coefficient of the or­
der of unity, the maximum emf induced by the beam in 
the resonator is equal in this case ( y 2 >> N) to the beam 
energy. The energy lost by the bunch in the decelerating 
phase of the field during the first quarter of the phase­
oscillations period (and acquired then in the accelerating 
phase) is 2rr 1m0d2y •1 > Therefore the partie le continues 
to be relativistic even at the minimum of the energy. An 
estimate of the pulse duration necessary to obtain the 
maximum field amplitudes can be obtained directly from 
(17) and (20): 

dR'I, 
--~ 12n~o, 

dn 
(21) 

Knowing the pulse duration necessary to obtain the 
maximum field amplitude, let us calculate the genera-

I) The amplitude (8) of the traveling wave with which the parti­
cle interacts is half as large as the maximum amplitude (20); the sec­
ond factor 2 in the denominator is due to the fact that the particle 
traverses half the resonator during slowing-down phase; allowance for 
the phase drift (sinusoidal form of the field) results in a factor 2/rr. 
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tor efficiency (the ratio of the energy accumulated in 
the field to the total energy of all the particles passing 
through the resonator): 

Wt Em2SL f)"""-= _ _::...:::...:=... __ 
W, 16rr/oQ-•moc"ynm · 

Substituting here the field from (20), nm from (21), 
and IJ.* from (5), we obtain 

1'J ~ (y/ N)'l•, y < N, (22) 

where we have left out a numerical factor of the order 
of unity, since only the order of magnitude of the dura­
tion of the pulse nm has been determined. Thus the 
efficiency of the system increases in proportion 'to this 
clear route of the maximum field amplitude. 

6. We now proceed to consider the problem of inter­
action between an unmodulated monochromatic beam 
and a resonator (l/i = 1). We assume here that the de­
pendence of the resonant frequencies on the wave num­
ber is nonlinear, so that the synchronism condition V h 
= V0 is satisfied for only one spatial harmonic that iJ' 
excited by the beam. 

In the linear approximation, putting Q-1 = 0 and 
l/i = 1 in (5) and expanding this expression in powers of 
a, we obtain the following integro-differential equation 
for a( T, T J: 

12JIN 
211 ~ d't''8(T','t'o+T--r')sin('t'-'t''). (22') 

0 

We seek a solution of this equation in the following 
form: 

8('t', 't'o) = a('t') exp (ia't'o). 

Substituting this expression in (22') we obtain an 
equation for a ' 

1- i)'3( 1 )''• a=f+ 2 211nN . . (23) 

Thus, the growth increment (E = -il Im a) of the 
instability is proportional to the cubic root of the beam 
currents. This is a characteristic of the Cerenkov in­
teraction mechanism between a beam and a decelerating 
medium (the additional factor of 2 in the denominator of 
the current is due to excitation of a standing wave in the 
resonator, in contrast to the traveling waves usually 
considered in an unbounded plasma). 

Let us consider now the nonlinear stage of the inter­
action of an unmodulated nonrelativistic beam ({3 2 << 1) 
with the resonator field. 0 

In this case the first integral of the equation of mo­
tion (8) depends on the phase of the entrance of the par­
ticle 7 0 : 

i'!(R, lp, 8, -ro) = {R[sin (~p- 't'o) -sin (~p- 't'o + 8) ]}'"~, (24) 

where~= +1 when 1r/2 < cp -T0 < 31T/2 and~= -1 
when -1rl2 < cp -T0 < lT/2. 

The plus sign in (24) corresponds to particles that 
fall into the accelerating phase of the field at the in­
stant of entry into the resonator, and the minus sign to 
those that fall into the decelerating phase of the field. 
SUbstituting (24) in (7) and introducing a new variable 
J = cp- T 0 , we obtain the following equations for the am­
plitude R of the field in the resonator: 

dR% - Jl/2 

a;;-=6l'211• ~ d{tsili'lt[sina-(tt)-sha+({t)], 
0 

(25) 

where the dependence of the phases a±(J) of the parti­
cles accelerated and decelerated by the resonator field 
on the entry phase J is determined by the following 
transcendental equations: 

"+(il) 

l'2R{rrN +-&-arc sin[sin {tch a+(a)]} = ~ dx 
}'1-sin2 {tch2 x' 

0 (26) 
<>_(il) 

l'2R{:rtN+-&-arcsin[sin{tcosa-(a)l} = ~ dx . 
0 l'1-sin2 a cos2 x 

Expanding (25) and (26) in terms of the small field 
amplitudes, we obtain 

a±(tt)= iiii :rtN cost}+ (2R)''• 112
:

2 
[ cosfr + rr; sin tt 1 sin 2-lt. (27) 

Here, as in (24)-(26), we assume that the beam par­
ticles leave the resonator in the same phase (accelera­
ting or decelerating) in which they entered the resona­
tor, so that the sign of the square root in (24)-(26) re­
mai~s uncha~ed. Under these conditions, the growth of 
the f1eld amplitude has an exponential character: 

dR I dr: = eoR, eo == 1/wrr.2JV2. (28) 

The upper limit of applicability of (27) and (28) is 
determined from the condition a(J) < 1. Putting a = 1, 
we obtain an estimate for the maximum field ampli­
tudes in the resonator when the latter is excited by an 
unmodulated beam: 

Rmax = C / 2n2N2, C ~ 1. (29) 

Comparison with the corresponding expression (13) 
for a strongly modulated beam shows that in the ab­
sence of modulation the field amplitude is smaller by 
approximately one order of magnitude, whereas the de­
pendence of the beam energy on the resonator length is 
the same in both cases. 

Physically this decrease of the field amplitude can 
be explained in the following manner. In the case of 
strong modulation each bunch falls in the decelerating 
phase of the field and the growth of the amplitude stops 
only when this amplitude is large enough to permit the 
bunch to execute half the phase oscillation during the 
time of flight. In the case of an unmodulated beam, the 
growth of the amplitude is determined by the difference 
effect of the interaction between the resonator and of the 
particles accelerated and decelerated in the field. In 
this case the phase-oscillation amplitude at which the 
increase of the field amplitude stops turns out to be 
smaller. The maximum field amplitude is accordingly 
decreased. 

The lower limit of the region of applicability of (28) 
is determined from the condition a ~ a IN >> e0 • Thus, 
the limits of applicability of (28) are determined by the 
inequalities 

(30) 

Since it was assumed above that the inequality eT 
~ ( 1J.N') 113 is satisfied, it is easy to see that the region 
of field-amplitude values in which the inequality (30) is 
valid actually exists. 
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7. We have thus shown that the phase shift introduced 
by the beam particles into the field generated by them in 
the resonator limits the growth of the amplitude of this 
field, both in the case of a modulated beam exciting the 
resonator by means of the Cerenkov radiation of the 
bunches, and in the case of an unmodulated beam that 
experiences automodulation under the influence of the 
initial perturbation of the field in the resonator and in­
tensifies this field. It should be noted that the method 
used in this case for integrating the equations of motion 
of the beam particles in terms of the Lagrange varia­
bles remains applicable also under conditions when the 
trajectories of particles with different initial phases in­
tersect. Assuming the time of flight to be small com­
pared with the reciprocal increment (q = eT << 1), we 
have actually obtained a solution of these equations in 
the zeroth approximation in the parameter q ~ e213• In 
the same approximation, it becomes possible to take in­
to account the thermal scatter of the beam particles 
and the loss of synchronization between the beam and 
the slow wave of the resonator (IV ph - V0 I * 0). 

Inasmuch as in fields close to the maximum value 
the change of the beam particle velocity under the in­
fluence of the field becomes comparable with the dif­
ference of the phase velocities of the neighboring spa­
tial harmonics of the field in the resonator (in the non­
relativistic case ~ V ph~ V0/2N), it follows that the real 

values of the maximum field amplitudes are apparently 
somewhat higher than the calculated ones, and the posi­
tion of the maximum itself is not stable, although gen­
eration of neighboring harmonics does occur more 
slowly than that of the fundamental harmonic (owing to 
the smallness of the time of interaction between the 

beam particles and the fields of these harmonics). 
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