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A proof is given of the fact that in the collapse of a finite sphere the disturbances of the metric remain 
small at the surface of the sphere in a comoving reference system when the surface of the sphere 
passes below the Schwarzschild sphere. 

IT is well known that for a distant observer the collapse 
of a spherical body leads to a "frozen" pattern when the 
radius of the body becomes equal to the gravitational 
radius, rsphere = rg = 2GM/c 2 , where M is the mass of 

the body, G is Newton's constant, and c is the speed of 
light. 

The problem of the collapse of a body in which the 
distribution and motion of the matter deviate slightly 
from spherical symmetry has been solved inl1l. In that 
paper it is shown that in this case also the pattern for 
an external observer approaches a "frozen" condition, 
and the external gravitational field approaches a sta
tionary field (all agll 11/at- 0). The proof inl1J makes 
essential use of the fact that in the contraction of a 
sphere with initially small deviations from spherical 
symmetry the disturbances of the metric at its boundary 
rsphere in a comoving reference system remain small 
for rsphere = rg. In this connection we referred to a 

paper by E. Lifshitz, l2J in which it is shown that the 
disturbances in a uniform medium increase without 
bound only when the density becomes infinite. Thornel3l 

emphasizes that this reference is not really cogent, 
since E. Lifshitz was considering an unbounded uniform 
medium, whereas in collapse we are dealing with a 
bounded body and the effect of the surface may be im
portant. 

From a physical point of view, in the collapse of a 
finite body there is no reason to expect that in a co
moving reference system the disturbance of the metric 
will increase without bound at rsphere = rg, since in 

this system the unperturbed solution has no singularities 
in the gll 11 or their derivatives (for a smooth fall of the 
density p at the boundary of the sphere), nor in the den
sity or motion of the material. Nevertheless, the asser
tion calls for a mathematical treatment not based on 
such intuitive physical arguments. A proof of this kind 
is given in the present paper. 

Let us consider a contracting sphere. For simplicity 
we assume dustlike matter, p = 0, and that the veloci
ties of all its points are zero at infinity. 1> In Lagrangian 
coordinates the solution of the Einstein equations for 
this problem can be written in the form l4 J 

1lThe proof can be extended to the case of a dustlike sphere with an 
arbitrary initial rate of contraction, and also to that of a sphere of mat
ter with nonzero pressure. 

ds2 = d-r2 - e'dR2 - r"(R, -r) (d82 + sin2 8d<p2), 

e' = (r')'. r = (3/ 2 )'hF'h(R) (-r.(R)- -r)'h, 

e = F' (R) / r'r2• (1) 

Here we have set 81rG = 1, and the prime denotes 
a/aR. The arbitrary function T *(R) can be fixed by the 
choice of scale of the coordinate R. We shall assume 
that the arbitrary function F(R), which describes the 
distribution of the matter in the sphere, is sufficiently 
smooth at the boundary (is differentiable a sufficient 
number of times at the point R0 where the density be
comes zero). 

We are interested in the properties of the solution in 
the neighborhood of the world lines of the boundary of 
the sphere. We shall show that in the collapse of a body 
with initial small deviations from sphericity an arbi
trary point on a world line of the boundary of the sphere 
remains nonsingular until the sphere contracts to a 
point. In other words, disturbances which are small 
for some T = const, smaller than a given To, do not be
come especially large in a finite neighborhood of To 

(with respect to Rand T and for all() and cp). We are 
naturally primarily interested in the instant To at which 
the surface of the sphere in the unperturbed solution 
passes below the gravitational radius. For definiteness, 
let us speak of this instant. 

The idea of the proof is as follows. We take the in
stant To in which we are interested, in the unperturbed 
solution. We shall now suppose that small perturbations 
are imposed on this solution at the instant To in the spa
tial region Ro ± ~R and for all () and cp. If the result of 
solving the Einstein equations for these perturbations 
shows that: 1) they remain small in a finite neighbor
hood, To± ~T, R0 ± ~R, all() and cp, and 2) they admit 
the necessary functional arbitrariness for the prescrip
tion of an arbitrary small perturbation, then the asser
tion will be proved. In fact, in this case arbitrary small 
perturbations at T1 = T- ~Tin the region of Ro ± ~R 
and all() and cp remain small also at T =To and at T2 
= T ± ~T. 

We now present the proof. 
We denote the small corrections to the metric of the 

unperturbed solution (1) by hk: 

g! = g!(O) + h~; i, k = 0, 1, 2, 3. (2) 

We require that after the disturbance the reference 
system still be a synchronous onel5J: hk = 0. We shall 
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look for the solution for the disturbances near a regular 
point in the form of series 

h: = a;+ b~ t + c~ t2 + ... , 
f.t, v = 1, 2, 3, t = 't- To. (3) 

The quantities a~, b~, c~ are (small) functions of the 

space coordinates. 
We write 

The Einstein equations for the perturbations can be 
written in the form £SJ 

fiR~= 6T~- 1f2B!6T. 

For the perturbations oT~ we have 

6Tg = - 6e, 6T: = u0e6ua, 6T! = 0. 

(4) 

(5) 

Substituting (3) and (5) in (4) and using the expressions 
for oRi given inl 5J, we find for the terms of zeroth 
order m t: 

2c + x! b~ = - Be, (6) 

1f2b;a- 1f2 (b! +a~ x:- a:x:),~ + 1/4 (x:a~"- x~ a,~)= u0e6ua, (7) 

1\P~ + 1 / 2 {2c~ + 1/ 2 x~ b - x~ b~ + x~ b~ + x~ a~- x~ a~ 
+ 1/, )( (b~- )(~a~+ x; am= 1 /,llsii~. (8) 

Here p/3 is the three-dimensional Ricci tensor, and 
0! 

oE and ouO! are the perturbations of the energy E and the 
velocity uO! at the instant T 0 • The semicolon indicates 
covariant differentiation, and the dot, differentiation 
with respect to T. 

Contracting (8) and substituting in (6) instead of c, 
we get a differential relation for a~, b~, and oE. From 
(8) we can determine all the c~ in terms of a~, b~, and 
OE. The expressions (7) can be written in a form solved 
for the derivatives of bt b~, and b~ with respect to R: 

iJb,3 iJb,3 iJb 2 
F F - 2 =F3• (9) 

iJR = 1' iJR = 2' iJR 

Here F 1, F 2, and F 3 are functions of at, bt, their first 

derivatives [but not of the right members of (9)], and 
ouO!. Equation (6) can be solved for a 2a~/aR2 : 

(10) 

where F4 depends on the a~ and their derivatives (but 
not on a 2a~/a R2 ). Thus if we prescribe arbitrarily, for 

1 th f t . 1 2 3 2 1 2 3 examp e, e unc wns a1, a1, a1, a3, b1, b1, b3, OE, oua, 
then from (9) and (10) we get a system of the Cauchy
Kowalewski type. The functions b~, b~, b~, and a~ can be 
found in this way from (9) and (10) in the neighborhood 
of Ro for all e and cp. 

We have obtained a solution of the problem which de
pends on twelve arbitrary functions. An arbitrariness 
by four functions is due to the arbitrariness in the 
choice of the perturbed reference system with hk = 0 
(for the formulas see£5l). There remains an arbitrari
ness by eight functions of the three spatial coordinates. 
As is well known, a solution containing eight different 
arbitrary functions is a general solution. 

Accordingly, we have shown that arbitrary small dis
turbances of the matter and field near the surface of the 
sphere remain small in the comoving perturbed solution 
for the reference system as the sphere passes below the 
Schwarzschild surface. The proof that in this case they 
always remain small in vacuum near r = r g and in the 
entire external space r > r g is given in £IJ 
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