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Results are presented of an experimental and theoretical investigation of optical harmonic genera­
tion by picosecond laser pulses. A nonstationary theory of harmonic generation is developed, in 
which space and time wave modulation are taken into account. The analysis is based on the quasi­
optics equations, in which the dispersion properties of the nonlinear crystals are taken into ac­
count in the first approximation of dispersion theory. The analysis is performed for frequency­
modulated pulses. It is shown that for nonstationary generation conditions the spectral and angu­
lar distributions of the harmonic are interrelated and the space-time structure of the harmonic 
may appreciably differ from those of the laser beam. Beam focusing under nonstationary condi­
tions is analyzed and the condition for optimal focusing is derived. An expression for the maximal 
energy of the second harmonic is obtained. In the experimental investigation, the main attention is 
directed to the spectral and angular distributions. These have been obtained in quasistatic (KDP 
crystal) as well as nonstationary (LiNb03 crystal) frequency doubling conditions. Variation of the 
shape and width of the harmonic spectrum are determined by varying the divergence of the laser 
beam. The experimental results are in agreement with the theoretical results. 

IN connection with the progress of laser physics in the harmonics has been carried out separately for spatially-
field of generation of ultrashort light pulses, consider- bounded beams (see, for exampleP•10l) and for pulses 
able attention is now paid by investigators to the non- (seePl ). However, for ultrashort pulses, the spatial 
stationary optical phenomena. In the field of very short, boundedness of the beams can be of fundamental Big-
picosecond laser pulses, the character of the nonlinear nificance. As we shall show below, in this case the ef-
optical processes is in many respects different from fects connected with the spatial and temporal modula-
that in the field of pulses of microsecond and nano- tions of the waves can greatly influence one another. 
second duration. This circumstance is connected with In this article, we investigate theoretically the 
the fact that the duration of the ultrashort pulses generation of second harmonics by spatially-bounded 
( r ~ 10-12 sec) is comparable with the time of relaxa- beams (diverging and focused) with broad frequency 
tion of the nonlinearities of media and the times of spectra (ultrashort pulses and pulses with frequency 
group delay of the interacting light waves. In the gen- modulation). Some of the results of the calculations 
eral case, both these effects become manifest, are compared with data of an experiment performed by 
naturally, simultaneously. However, in many pro- the authors on second-harmonic generation in LiNb03 

cesses, such as the generation of harmonics and para- and KDP crystals with beams from a neodymium laser 
metric processes, the only important factor in the with synchronized modes. Principal attention was paid 
finite character of the time of the group delay of the here to the analysis in the nonstationary regime of the 
waves[1' 2\ which causes the nonstationarity behavior angle structure and the frequency spectrum of the 
of the wave. second harmonic. 

For the nonstationary case, a theoretical analysis of 
the generation of a second optical harmonic by ultra­
short pulses and broad-spectrum emission has been 
carried out for plane waves in[l,a-sJ. The experi­
mental investigation of the generation of a harmonic in 
a nonstationary regime, corresponding to such a model, 
was recently carried out by Shapiro1, [7 1, who investi­
gated the dependence of the duration of the ultrashort 
harmonic pulses on the length of the nonlinear LiNb03 

crystal. Even earlier, Kovrigin[a] observed changes in 
the angle structure of the second harmonic, excited in 
a KDP crystal by a broad spectrum (~So A), in com­
parison with that obtained for a narrow spectrum. 

By now, the analysis of the generation of optical 

l) We note that in Fl the synchronism angle was chosen to be 8s = 
90° by varying the crystal temperature. In this case there are no effects 
connected with the fmite dinlensions and the angle divergence of the 
laser beam. 
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1. THEORY OF GENERATION OF OPTICAL HAR­
MONICS BY SPATIALLY-BOUNDED BEAMS WITH 
BROAD FREQUENCY SPECTRA 

The process of doubling the frequency of laser radi­
ation with simultaneous account of the spatial and tem­
poral modulation at small harmonic-conversion coef­
ficients is described by the following equations[11 : 

(1a) 

& fi} 1(02 fP -+--+i- -+- At=O { {Jz Ut iJt 2k1 iJx2 iJy2 ) } • 
(1b) 

The notation here is standard: the index 1 pertains to 
the fundamental radiation, index 2 to the second har­
monic, An are the complex amplitudes of the wave, 
un the group velocities, kn the wave numbers, 
fl. = 2kl - k2 is the deviation of the wave numbers, (3 
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is the birefringence angle2>, a the coefficient of non­
linear coupling, the z axis is directed along the 
normal to the boundary between the linear and non­
linear media, and the x axis lies in the plane of the 
birefringence. 

Equation (1) constitute a system of equations of wave 
optics, in which the dispersion properties of the 
medium are taken into account in first approximation 
of dispersion theory. These equations will be solved 
with the following conditions on the interface z = L 

A,(t, x, y, z = £) = AIO(t, x, y, L), A,(t, x, y, z = £) = 0. (2) 

Although the solution of Eqs. (1) can be obtained 
directly, it will be more convenient in the subsequent 
analysis to go over immediately in (1) to the frequency­
wave spectrum by means of the transformation 

1 00 

s.(Q, l\, z) = (2n)• \~~A.(t, X, y, z)e-i(!ll-xp)dtdp, (3) 
--oo 

where K • p = kxx + kyY and dp = dxdy. 
For the second harmonic, such a spectrum is de­

termined by the expression 

Sz(Q, x, l) = - ia exp {- i f.L- illj:2(Q, x)} ~ ~-. ~ Sw(Q,, x,, £) 

. ;;in (1/2llj:) 
XS10 (Q2,x,,L)e-•1w1 'h'!: ll(Q- Q,- ~lz) 

X 6(x- x,- x2) dO, dQ, dx, dxz, (4) 

where l is the length of the nonlinear crystal, 
S10(Sl, K, L) is the spectrum of the fundamental radia­
tion, n is the deviation from the central frequency w l, 

ljJ = L1 + ljJ1 (01, xi) + ljJ 1 (02, x2 ) -ljJ2 (Q, x), 

Qn 1 Q 1 
'1:1 (0 x) =---x 2 lj:z(O x)=-- ~k --x2 

n, n Ut 2ki n ' ' U2. x 2k2 • 

From an analysis of (4) it is easy to obtain the con­
dition for the maximal contribution of the spectral 
components of the fundamental radiation to the har­
monic; this will obviously be the condition of vector 
synchronism (compare with[l,wJ): 

k 1 (w 1 + Q!) + k 1 (w 1 + Q2 ) = k2(2w 1 + 10). (5) 

Analytic results can be obtained from (4) only for con­
crete models of the laser radiation. For the case of 
plane waves and monochromatic beams, expression 
(4) leads to the distributions obtained in[ll for the 
spectra of the harmonic. 

In the present paper we considered harmonic exci­
tation by a Gaussian beam, the amplitude of which in 
the transverse cross section at z = 0 is given by 3> 

A1 (t, p)= Aoexp {- -~- c~ + iy )t'}, Ao= ( ::4; W, v: )"', 
(6) 

where W1 is the total energy of the beam, and the 
parameter y characterizes the frequency modulation. 

If a Gaussian beam passes through a lens, say a 

2l In the present paper, the investigation is limited to an inter­
action of the type oo-+ e (o- ordinary, e- extraordinary waves). 

3l A Gaussian distribution of intensity in the cross section of the 
beam is possessed not only by lasers with spherical and semispherical 
resonators [ 11 ], but, as shown by the experimental data, also by solid­
state lasers with flat mirrors, owing to the inhomogeneities of the 
crystals (see, for example, [12 ] ). 

spherical one, located in the Fresnel zone of the beam, 
then the amplitude of the beam at z = 0 is described 
by the expression 

Ato(t, p) = Ao exp {- (- 1- + i ...!...) p2 - (~ + iy) t2 lJ . (7) 
a2 2R, 1:2 

Here k is the wave number in the linear medium, and 
R1 is the focal length of the lens (with the aid of R1 it 
is possible to take into account also the presence of a 
definite angular divergence of the laser radiation). 
Solving Eq. (lb) and taking (7) into consideration, we 
obtain an expression for the spectrum of the laser 
radiation at a distance z from the lens : 

S1(0,x,z)= S10 (Q,x)exp{i [ 2~ x2 -~] z }. (8) 

where S10( n, K) is the Fourier transform of the ex­
pression (7 ). 

Finally, substitution of (8) in (4) leads after straight­
forward but cumbersome calculations to the second­
harmonic spectrum for the considered model of the 
laser radiation: 

-ra2 { -r2Q2 a'x2 

S2(0, x, l) = -iaAo2 B(Zn)'f, exp - 8 (1 + i~) 8(1- iD/R) 

1 "(.+1 exp {-iz{L1 + ~kx-vO]} 
X J k 

(1- iD/R)l'1 + iyT2 nL 1- iz(1/D- i/R) (9) 

Here D = ( Y2)k1a2 is the diffraction length of the beam, 
R = nR1, n is the refractive index in the synchronism 
direction, v = u21 - u11 is the detuning of the group 
velocities, and the phase cp is equal to 

q; = [_g_- ~kx- - 1-x•] L- .£.x2 + .£.Q + !il. 
u2 2k, 4k u 

Using (9 ), let us consider different characteristics of 
the second-harmonic radiation. 

1. Spectral characteristics of the harmonic. The 
distribution of the spectral density over the frequencies 
(usually called the spectral distribution) and the dis­
tribution of the spectral density over the wave num­
bers kx, and ky (or the angular distribution) of the 
second harmomc, registered respectively by a spec­
trograph and by a photographic plate placed at the 
focus of a gathering lens, are determined by the formu­
las 

J,(Q,l)= 4n') ~ ISz(Q,x,l) 1rax, 

/ 2(x,l)=2n) ISz(Q,x,l) l2 d0. (10) 

For the case S2( G, K, l ) in the form (9 ), the distribu­
tions h( n, l) and I2 ( K, l ) are given by the expres­
sions 

/,(Q,l)= Kr . exp{- ,zgz \F.(Q,~,l), 
2l'n{1 +y<4] 4(1 +y2T4) j 

where 
K = Ba•w,• I V:itca>-r, 

nL·rt 

Fv(O, ~. l) = ~ ~ !ll (z2, z,) 
nL 

nL+l 

Fr-(kx,v,l)= ~$ !ll(z,,z,) 
nL 

(11) 

(13a) 
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>< exp{ -i~kx(Z2-z,)- :: (1 +y"t') (z2-Zt) 2}dztdz2, (13c) 

<D(z2, z,) = {[1-iz2(1/D-i/R)][i+iz1(1/D+i/R)]}-1 
Xexp {-iil(z2-Zt)}. (13d) 

It is seen from (12) that the angular distribution of 
the harmonic along the y axis is determined only by 
the distribution of the fundamental radiation along the 
same axis. As to the angular distribution of the har­
monic with respect to x, it can depend strongly on the 
properties of the nonlinear crystal, {3 and 11, and on 
the temporal characteristics of the main beam ( T, y ). 
Similarly, the spectral distribution of the harmonic 
(11) can be determined to a considerable degree by the 
parameters 11 and {3 and the spatial characteristics of 
the fundamental radiation (a, D, R). From a compari­
son of (11) and (12) it is also seen that, in accordance 
with the space-time analogy in nonlinear optics Pl, the 
angular distribution of the harmonic with respect to x 
can be obtained from the spectral distribution with the 
aid of the substitution 4 > 

Q-..kx, -r-+a, y-r2 -+D/R (y-+k/2Ri), V-+-~. (14) 

Taking this circumstance into account, let us examine 
in detail one type of distribution, namely the spectral 
distribution. 

Spectral distribution. The form of the distributions 
(11) depends on the relation between the length of the 
crystal l, the aperture and quasistatic characteristic 
lengths la and lq, respectively, and the values of D 
and R. Let us examine some of them, bearing in mind 
mainly a comparison of the results of the calculations 
with the experimental results. 

Let us consider first the case of harmonic excita­
tion by a plane-parallel beam ( R - oo ), when the 
crystal is in the Fresnel zone of the laser radiation. 
I D » ( nL = l ) 1. In general form, the function F 11 

(13b) is expressed here in terms of probability intE'­
grals with complex arguments. If the crystal length l 
is smaller than the aperture length la = a/ {3, then F 11 

assumes the known form for plane waves: 
F (Q = sin2[(vQ- il)l/2] (15 ) 

v ) {(vQ- A)/2]' · 

From (11) and (15) it follows that at a length l smaller 
thanthequasistatic length lq = T/1111 J1 + y 2T\ we 
;;et E 11 ( 0) = l 2 and the spectral distribution of the 
harmonic is Gaussian; this is the so-called quasistatic 
or quasistationary regime. In the nonstationary 
regime (l > lq ), i.e., when the width of the funda­
mental-radiation spectrum is 

L\ =2341"~ ~ 
Ult , "t > lvll ' 

the form of the spectrum of the harmonic is deter­
mined essentially by the function (15), and in the case 
of a detuning t:;. ;o< 0 the maxima of the same order in 
the wings of the spectral distribution of the harmonic 
have different values. In the general case, the width of 
the spectrum of the harmonic can be determined from 
the expression 

4l We note at the same time that the quantity D itself does not 
have a temporal analog here, since different approximations have been 
used to describe the spatial and temporal modulation of the wave (see 
[']). 

(16) 

where l:;.wa,k = 3.32 ,J 1 + y 2 T47T is the width of the 
spectrum in the quasistatic regime. In the nonstation­
ary regime t:;..wa = 5.56/lllll. 

If the crystal length l is greater than the aperture 
length, then the spectral distribution begins to depend 
on the value of la. When l >> la, the function F11 is 
given by 

(17) 

The width of the spectrum of the harmonic is deter­
mined as before by expression (16), in which the 
quantity 0.581 should be replaced by la. Thus, owing 
to the influence of the aperture effect on the generation 
process, the spectral distribution of the harmonic in 
the nonstationary regime becomes smoothed out, and 
the width of the spectrum t:;..w 2 increases. By changing 
for a given crystal the value of the aperture length la, 
in other words, by changing the dimension of the beam 
a, we can vary t:;.w 2 • As expected, the dispersion of the 
medium ceases to influence the spectrum of the har­
monic when the effects connected with the finite dimen­
sion of the beam become manifest earlier than the 
temporal effects Ua < lq), and consequently the pro­
cess of harmonic generation becomes quasistatic. The 
presence in (1 7) of a detuning t:;. ;o< 0 leads to a change 
in the value of the average frequency of the harmonic, 
by an amount 

rlo = il/v[1 + (lq/la\ 2]. 

Let us examine now the spectra of the harmonic 
excited by focused beams. The case of focusing of the 
beam on the front face of the crystal, when the condi­
tions l « R and D » ( nL + l ) are satisfied, has in 
fact just been analyzed. When the beam is focused in 
the center of the crystal, an analysis of the spectral 
distribution of the harmonic, if the length of the crystal 
is smaller than the aperture length la, is identical 
with the analysis of the angular distribution for a mono­
chromatic beam r 101. 

Let us stop to discuss in greater detail the example 
of harmonic generation by defocused beams. In the 
case of strong defocusing of the beam ( I R I « D) and 
{3 ;o< 0, the function F 11 (13b) is analogous to the expres­
sion (17 ), where the role of the aperture length is 
played by the quantity Zi = aR/ {3D. If {3 = 0, then the 
function F 11 is given by 

Fv(Q) = JRI 2{[ci((;) -ci(:rt)J2+ [si((;) -si(:rt)J2}, (17') 

where 

£ = :rt + llvQI, :rt = (nL+ !RI) lvRJ. 

An analysis shows that in this case the spectral distri­
bution of the harmonic can be close to a Gaussian dis­
tribution with weak modulation. 

Angular distribution. As already noted, the angular 
distribution of the harmonic (12) can be obtained from 
the spectral distribution (11) by using the substitution 
(14). Thus, for example, the substitution of (14) in ex­
pressions (15) and (16) gives the form of the function 
Ff3(kx) (13c) at D » (nL + l) and R - oo. It follows 
therefore that the angular spectrum of the harmonic 
is discrete-continuous in the quasistatic generation 
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regime, l < lq (such a structure of the frequency 
spectrum takes place in the nonstationary regime when 
l < la), and becomes continuous when l >> lq. Thus, 
the character of the angular distribution of the har­
monic and its width now depends strongly on the dis­
persion properties of the crystal and on the spectral 
width of the fundamental radiation. Consequently, it 
becomes possible to vary the angular divergence of 
the harmonic. 

2. Space-time characteristics of the harmonic. No 
less important characteristics of the harmonic are the 
spatial dimensions of the beam and the pulse duration. 
Although these parameters are always connected with 
the spectral distribution, in the case of harmonic gen­
eration in the nonstationary regime, owing to the fact 
that, as shown above, they influence each other, the 
space-time structure of the beam becomes sufficiently 
complicated and calls for a separate consideration. 
Let us illustrate the foregoing using the simplest prob­
lem of harmonic generation by a plane-parallel beam 
( R - oo, D - oo ). In this case the complex amplitude 
of the second harmonic is determined by the expres-
sion 

l 1 
A2 (t,x,y,l)= -icrAJ! ~ exp{ -2[ ~+ iy J 

• 
X(t-T+v£) 2 -2 Y'+(x-Jl+~~) 2 }as, (18) 

where T = L/u + l/u2 - 11nL. When l » lq and (or) 
when l » la, Eq. (18) takes the form 

A,(t, x, y, l) = -i<rAo2 exp {-2[~t- vx + ~xoF I (d- iby) }. (19) 

Here b = ~2 (·r-4 + y2)-1, d = a"v2 + b;-2, 

L l 
Xo =-+-- v(nL+ l). 

u u, 

Thus, when the fundamental-radiation beam is fre­
quency modulated ( y "" 0) the harmonic radiation has 
both frequency and (if (3 "" 0) spatial modulation of the 
phase (an angular divergence), and the index of the 
modulation depends in a complicated manner on the 
values of the quantities y, (3, T, a, and 11. At a given 
instant of time t, the maximum value of the harmonic 
intensity takes place at the point x = (3( t + x0 )/ 11. 

From (19) we can readily determine the duration of 
the pulse T 2 and the beam width X2 of the harmonic. 
In the case of beams without frequency modulation 
(y = 0), T 2 is given by (compare with (17) with 
0.57l- la) 

T, = T,,q y'i + (la I lq') 2, 

where l q = T I I 11 1. 
(20) 

Consequently, the harmonic pulse duration in the 
nonstationary regime is always larger than in the 
quasistatic regime T 2,q = 0.83T. For beams with fre­
quency modulation, T2 can be either larger or smaller 
than the quasistatic value. This is determined by the 
ratio of the lengths la, lq, and lq. For example, if the 
width of the spectrum of the fundamental radiation is 
determined principally by the frequency modulation, 
then when lq > la > lq = r/1 11 I-ll + y 2T 4 we get 

(21) 

We recall that in the nonstationary regime the width of 
the spectrum of the harmonic is always narrower in 
our problem than in the quasistatic regime. 

The foregoing results can be extended also to the 
harmonic beam widths. 

3. Energy of harmonic. Conditions for optimal 
focusing of pulses with a broad spectrum. The expres­
sion for the energy W 2 of the second harmonic can be 
obtained by integrating (11) or (12 ); we then have 

W 2 = K rr cD (z2, z1)exp{- [zq-2 + ( 1 + ~:) z.-2] (z2- z,) 2} dz, dz,. 

nL (22) 
In the limit as lq - oo ( T - oo) we obtain a formula for 
the power of the harmonic excited by a monochromatic 
beam. Thus, both expressions turn out to be analogous, 
the only difference being that the argument of the ex­
ponential in (22) includes also the quasistatic length lq; 
these expressions can be reduced to a single form by 
introducing in (22) the effective "birefringence angle": 

(23) 

An analysis of the energy of the harmonic W 2 under 
different generation conditions can be readily carried 
out by following[ 101 • Let us emphasize the features of 
beam focusing with a broad frequency spectrum using 
as an example a harmonic excited by a beam focused 
at the center of the crystal ( L =R - l/2n). Since the 
conditions for optimal focusing for monochromatic 
beams do not depend on the birefringence angle (3, in 
the focusing of nonmonochromatic they will likewise 
not depend on J3eff· For the problem under considera­
tion, the optimal radius of the focusing lens is R10 
= 0 .42na ~In the nonstationary generation regime 
(lq < l), the maximum energy of the harmonic, ob­
tained at optimal focusing, now depends not only on the 
length of the crystal, but also on the value of the char­
acteristic length la and lq (R <D). 

,.,----,---,-c-=-~~ 

W2, max~ 6.45 u2W,2 (k,l) 'I• I ~Tf1 + (laR I (q0) 2• (24) 

If the quasistatic length lq is much smaller than the 
aperture length la (for example, in the generation of 
harmonics in the direction of the synchronism angle 
e s = 90°' (3 = 0 ), then (24) takes the form 

W2, max= 6.45 u2W,2D(kd) '/, / aR lviV1 + y2T'. (25) 

Thus, in the case under consideration, the maximum 
energy of the harmonic is influenced by the dimension 
of the beam a and its frequency modulation. It should 
be noted that, at an equal width of the frequency spec­
trum, frequency-modulated beams produce a smaller 
energy value W 2,max ( W 2,max does not depend at all 
on the pulsed duration T when y = 0 ). 

2. EXPERIMENTAL INVESTIGATION OF HARMONIC 
GENERATION BY ULTRASHORT PULSES 

1. Parameters of the apparatus. In the experiment 
we used as the source of the second-harmonic excita­
tion the radiation from a neodymium-glass laser op­
erating with self-synchronized modes. The active ele­
ment (the laser rod) had end faces inclined at the 
Brewster angle. The resonator length was 130 em. The 
resonator mirrors were coated on wedge-like sub­
strates. The reflection coefficient of the "dead" 
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mirror was 99%, and that of the output mirror 53%. The 
initial transmission of the saturable filter was 50%. 

The laser emission had the following characteris­
tics: total train energy ~o .1 J, number of pulses in the 
train 10-15, pulse duration (3-4) x 10-12 sec; the 
power density reached 30 GW /em 2, the beam diverg­
ence at half intensity level ~1 ', and the beam diameter 
3 mm. 

The duration of the ultrashort pulses was estimated 
by the two-photon proceduref 14 l, the criterion for the 
synchronization of the laser modes being the ratio R 
of the maximum intensity to the background. The 
measured values R "" 1.8-2 .3 (see Fig. 1) lie between 
the theoretical values for unsynchronized modesJ 
R =1.5, and for fully synchronized modes, R =3L 13l 
There was good agreement between the laser-emission 
spectrum determined from measurements on the pulse 
duration and the width of the spectrum measured with 
the aid of a spectrograph. Consequently, in our case 
the laser radiation had no significant frequency modu­
lation. 

The second-harmonic generation was investigated in 
KDP crystals 2.5 em long and LiNb03 crystals 1 em 
long. This set of crystals has made it possible, without 
retuning the laser generator, to compare the different 
excitation regimes of the harmonic (quasistatic l < lq). 
Indeed, for pulses of duration 3 x 10-12 sec, the quasi­
static lengths for the KDP and LiNb03 crystals were 
respectively 25 em and 0.5 em. The generation of the 
harmonic was effected at small conversion coefficients 
(less than 5% ). 

2. Experimental results. Discussion. The observed 
experimental spectra of the almost plane-parallel beam 
of second harmonic, but out by the spectrograph slit 
(0.03 mm) from the generated weakly diverging beam, 
are shown in Fig. 2. Figure 3 shows the corresponding 
photometric curves. The spectra of the harmonic 
emerging from the KDP is continuous, its width 
t.A 2 = 6 A corresponds to the quasistatic conversion 
regime. The spectral distribution of the harmonic ex­
cited in LiNb03 is highly uneven. The width of the 
central peak between the minima is 3 A, the width of 
the side peaks to the left of the maximum is t.A2( e) 
= 1.8 A, and on the right it is somewhat larger. These 
values are in satisfactory agreement with the theoreti­
cal value t.A~t), calculated in accordance with expres­
sion (15) using the formula .6.A2 = A2/2c lv ll (t.A~f) 
= 1.8 A for the LiNb03 crystal at l = 1 em). In the 
nonstationary regime, the side maxima of the spectral 
distribution of the harmonic, shown in Fig. 2b, have 
different values, owing to inexact adjustment of the 
crystal along the synchronism direction relative to the 
frequency of the fundamental radiation, which has 
maximum spectral density. In addition, the minimum 
value of the intensity in the spectrum of the harmonic 
is not equal to zero, possibly because of the presence 
of a definite divergence in the fundamental-radiation 
beam, leading to certain interactions (5), and in the 
beam passing through the spectrograph slit. 

Figure 4 shows plots of the spectral distribution of 
harmonic excited in the nonstationary regime by a 
strongly diverging beam. To this end, a negative lens 
was placed in front of the LiNb03 crystal, and a posi­
tive lens behind the crystal, to gather the radiation on 

fluorescence excited by laser radia- A 
FIG. 1. Intensity of two-photon I I 

tion (;\, 1 = 1.06 ll) in rhodamine 6G. ~ ~ 
The figure indicates the duration of 
the ultra-short pulse calculated from '--------++~:.=------,-
the spatial dimension of the bright ::::1 t 
spot of fluorescence. 11 psec 

FIG. 2. Spectral distribution of second harmonic, generated by an 
almost plane-parallel beam of fundamental radiation: a - in quasistatic 
regime (KDP crystal, 1 < 1q), b-in nonstationary regime (liNb03 crys­
tal, 1 > 1q)· 

FIG. 3 

"I ~ 
lA_ 

-12 -o o o 12 • 
Jlc,A 

FIG. 4 

FIG. 3. Photometry curves: 1 - case of Fig. 2a, 2 - Fig. 2b. 

FIG. 4. Experimental plots of the spectral distribution on the sec­
ond harmonic excited in the nonstationary regime in the LiNb03 crys­
tal by a diverging beam formed by lenses with focal lengths R1 =- 25 
em (curve 1) and R1 =- 10 em (curve 2). 

to the slit of the spectrograph. A comparison of the 
curves of Fig. 3 with the curves of Fig. 4 shows that in 
the nonstationary generation regime the spectrum of 
the harmonic becomes smoother with increasing 
divergence of the fundamental radiation, and its width 
increases. Thus, by varying the divergence of the laser 
beam, it is possible to change the width of the spectrum, 
meaning also the duration of the harmonic pulse. 

The angle structure of the second harmonic is shown 
in Fig. 5. A periodic structure is clearly seen in the 
angular distribution of the harmonic generated in the 
KDP crystal5>. No such structure exists in the angular 

S) Exactly the same angular structure was observed earlier in the 
harmonic generated by radiation with a narrow spectrum [1 5 ]. 
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FIG. 5. Angular distribution of second harmonic generated by a 
diverging fundamental-radiation beam: a- in the quasistatic regime 
(KDP, l < lq), b - in the nonstationary regime (LiNb03 , l > lq). 

distribution of the harmonic emerging from the LiNb03 

crystal, and the distribution here is almost homogene­
ous6>. The results are in agreement with the theory of 
Sec. 1. 

We also investigated experimentally the energy 
characteristics of a frequency doubler for picosecond 
pulses. At small coefficients of conversion of the laser 
radiation into the harmonic, the conversion in LiNb03 

(l "'1 em) was almost twice as effective as in KDP 
(l "'2.5 em); this value is close to the calculated one. 

CONCLUSION 

We can thus draw the following conclusions from our 
experimental and theoretical investigations of second­
harmonic derivation by beams of laser radiation of 
picosecond duration. The frequency spectrum of the 
harmonic in the nonstationary generation regime, in 
the absence of effects connected with spatial bounded­
ness and divergence of the laser radiation and with the 
anisotropy of the nonlinear crystals, has a discrete­
continuous spectrum (it is modulated like sin~/x2• 
When these effects are significant, the spectral distri­
bution of the harmonic becomes smoothed out continu­
ous. The width of the harmonic spectrum is deter­
mined here not only by the quasistatic width, but also 
by the ratio of the characteristic quasistatic and aper­
ture (or its equivalent) lengths. If the spatial effects 
become manifest at shorter lengths than the effect of 
the temporal nonmonochromaticity and of the disper­
sion of the crystal, then the generation of the harmonic 
occurs as in the quasistatic regime. 

The angular spectrum of the harmonic behaves 
similarly. If the temporal effects do not influence the 
process of harmonic generation, then the angular spec­
trum of the harmonic is discrete- continuous· in the 
opposite case (in the nonstationary regime) the angular 
distribution is continuous. In the nonstationary genera­
tion regime, the space-time structure of the harmonic 

6) The rings seen on the photographs of Fig. Sb are due to inter­
ference of the light scattered by the inhomogeneity of the crystal; sim­
ilar rings are observed in the field of the radiation of a single-mode gas 
laser when this radiation passes through the crystal. 

beam differs strongly from the structure of the laser 
radiation. 

The dependence of the widths of the frequency and 
angular spectra of the harmonic in the nonstationary 
regime on the parameters of the laser radiation can 
obviously be used to obtain harmonics with specified 
parameters. Experimentally, it is easiest to realize 
the dependence of the frequency spectrum of the har­
monic, and consequently of the pulse duration, on the 
angular divergence of the laser radiation, which can 
be readily varied. 

Finally, we note that in the nonstationary generation 
regime, the maximum energy of the harmonic at 
optimal focusing depends on the space-time structure 
of the laser beam. 

The authors are grateful to S. A. Akhmanov for a 
discussion of the present work and to V. A. Preobraz­
henskii for help in processing the experimental results, 
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