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A theoretical investigation is carried out of the dependence of the Bose-condensation temperature of a 
nonideal Bose gas on the linear dimensions of the region occupied by the gas (dimensional effects). Two 
versions of the theory of the nonideal Bose gas are considered: a theory assuming the existence of 
nonvanishing quasi-expectations (a,) and (a;) where a, and a; are creation-annihilation operators of 
particles in the ground state, and a theory which makes use of a pair Hamiltonian, and in which the 
spectrum of one-particle excitations has a gap for small momenta p- 0. The first theory leads to 
anomalous size effects, whereas the second one leads to normal size effects. For a normal size ef­
fect the dependence of the Bose-condensation temperature depends on the linear dimensions for arbi­
trarily large values of the smallest linear dimension. 

THE investigation of the nonideal Bose gas carried out 
in [ 1 - 41 has shown that the particle density on the 
ground level depends on the relations among the linear 
dimensions of the region occupied by the gas, even in 
the thermodynamic limit. The thermodynamic limit 
means an indefinite increase in the particle number N 
and the volume V of the system, the density n = N/V 
remaining constant, such that the area of the boundary 
surface S increases slower than the volume, i.e., 
sv-o. 

The dependence of the particle number density in the 
ground state (particle density in the condensate) on the 
ratios of the linear dimensions means essentially that 
the number of particles in the condensate cannot be con­
sidered as an additive extensive thermodynamic func­
tion. 

Since the existence of a macroscopic particle num­
ber in the ground state is usually related to the pres­
ence of superfluid properties, one should expect in this 
case a dependence of the temperature of superfluid 
transition on the ratios of the linear dimensions of the 
system. Experiments have repeatedly shown a depend­
ence of the superfluid transition temperature on the 
thickness of thin helium filmsp-a 1 however, no corre­
lations of this temperature and the ratio of the thick­
ness and the other dimensions were observed. We shall 
call the dependence of the temperature of the superfluid 
transition on the absolute value of the smallest dimen­
sion involved, the normal size effect, and the depend­
ence of this temperature on the ratio between the linear 
dimensions-the anomalous size effect. Thus, if the 
theory of the ideal Bose gas predicts the existence of 
anomalous effects, the experiment has so far exhibited 
only normal size effects. 

In this connection it seems interesting to investigate 
the size effects in a nonideal Bose gas, which is the 
purpose of the present paper. Two presently existing 
versions of the theory of a weakly nonideal Bose gas 
have been considered: the theory with distinguished 
condensate/9 - 111 in which it is assumed that anomalous 
expectation values like (a0 ) and (a;) exist, with a, and 
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a; the annihilation and creation operators of particles 
in the ground state, and a theory which uses the so­
called "pair Hamiltonian" [12- 141 (as in [121 we shall 
abbreviate the name to "pair theory"). It turned out 
that only the first theory predicts anomalous dimen­
sional effects. Thus, an investigation of dimensional 
effects might help in distinguishing the two theories. 
The experimental absence of anomalous effects favors 
the pair theory. We also note that the free energy in 
the pair theory turns out to be smaller than in a theory 
with distinguished condensate. 

1. SIZE EFFECTS IN THE THEORY WITH 
DISTINGUISHED CONDENSATE 

The existence of the nonvanishing anomalous expec­
tation values, or so-called quasi-expectation values 
(au) and (a;) in a theory with distinguished conden­
sate is related to a violation of the symmetry of the 
system with respect to gauge transformations, symme­
try which is exhibited by the initial Hamiltonian of the 
system. [ 151 

The fact that ( a0 ) and (a;) do not vanish allows one 
to derive from the general properties of the grand ca­
nonical ensemble a fairly strong inequality for the aver­
age occupation numbers of one-particle levels with 
p * 0, witnessing the presence of a singularity 1/p2 in 
the momentum distribution of the particles. This is the 
content of the so-called 1/p2 -theorem proposed by 
Bogolyubov.[151 The indicated inequality can be written 
according to Hohenberg[161 in the form 

1 TmNo 
N(p);;. -2+pzN' (1) 

where N(p) is the average particle number of the level 
with momentum p, m is the particle mass, T is the 
temperature, and N0 = N(O). 

We show below that the inequality (1) implies the ex­
istence of anomalous size effects.[171 

We consider a parallelepipediwith edges Lx :::::: Ly 
:::::: Lz and periodic boundary conditions, so that the val­
ues of the momentum components are determined by the 
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three quantum numbers k, l, s: 

h h h (2) 
Px = ky:-, Pv = z1-, p, = s~L . 

X !J z 

As in [ 4J, we split the total particle number N into 
four components: 

N = N0 + N, + Nz + N,, 
~ 

N0 =N(O), Nt=~ 1 N(p), 
k=-00 (3) 

N2 = ~~ ~ N(p), Na= ~~ ~ N(p). 
l=~x. k=-ec 

The primes on the summations in (3) indicate that the 
value zero of the summation index is to be omitted. The 
quantities N0, N1, N2, and N3 determine the particle 
numbers in the condensate and in the one-dimensional, 
two-dimensional, and three -dimensional phases, re­
spectively. 

By means of the inequality (1) one can estimate from 
below the quantities N1 and N2• For this estimation we 
replace N(p) in (3) by the right-hand side of (1), and 
compute the sum for those values of k and l for which 
the right-hand side of (1) is positive. It is easy to per­
form the one-dimensional summation for Nu replacing 
the finite limits by infinite ones. For the computation 
of the two-dimensional sum N2 we replace the sum by 
a two-dimensional integral, eliminating the region of 
small momenta p < h/Ly, i.e., those which are smaller 
than the smallest momentum h/Ly occurring in the 
sum. It can be shown that this method of calculating the 
sums leads to a negligible relative error in the thermo­
dynamic limit, i.e., for large Lx/A, Ly/A., and Lz/A, 
where .\ is the thermal wavelength 

/.2 = h2 / 2nmT. (4) 

As a result we obtain the following estimates from 
below for the quantities N1 and Nz: 

(5) 

(6) 

If anomalous size effects are absent, then the quan­
tity NofN should be a constant in the thermodynamic 
limit. However, this assumption leads to a contradic­
tion for a limiting procedure in which ln Ly increases 
faster than Lz. In that case it follows from (6) that for 
a sufficiently large ratio (A./Lz) ln (Ly/A) the number of 
particles Nz in the two-dimensional phase becomes 
larger than the total number of particles N, which is 
proportional to the volume V = LxLyLz. In the same 
manner the number N1 of particles in the one-dimen­
sional phase N1 becomes larger than N if Lx in­
creases faster than LyLz. If in the limit the quantities 
Lx"-/LyLz and (.\/Lz) ln (Ly/A) tends to zero, as hap­
pens for instance for a cube (Lx = Ly = Lz), then the 
inequalities (5) and (6) allow for finite values of N0/N, 
i.e., for the presence of Bose-condensation. Previously 
Hohenberg has made use of the 1/p2 -theorem to prove 
the impossibility of Bose condensation in one- and two­
dimensional systems. [16 J From the above it follows that 
this theorem forbids Bose condensation also for three­
dimensional systems with sufficiently large values of 

the quantities LxA/LyLz and (.\/Lz) ln (Ly/A). Thus, 
both in the ideal and nonideal Bose-gas the values of 
N0/N and of the temperature of Bose condensation into 
the ground state depend on LxA/LyLz and (.\/Lz) 
x ln (Ly/A), i.e., anomalous size effects occur. This 
conclusion remains in force for arbitrarily strong in­
teractions between bosons in a homogeneous system, as 
long as the quasi-expectation values ( a0 ) and (a~) ex­
ist. However, in the interacting Bose gas not only NofN 
but also the free energy density depends on the quan­
tities LxA/LyLz and (A./Lz) ln (Ly/A), since the free 
energy density depends on N0/N. Therefore the viola­
tion of additivity occurs not only for N0 , but also for 
the free energy, in distinction from the ideal Bose gas, 
where the free energy does not depend on N0 • [ 4J 

2. SIZE EFFECTS AND THE PAIR THEORY 

In the pair theory the initial Hamiltonian of the inter­
acting bosons is replaced by a pair Hamiltonian, in 
which some terms of the initial Hamiltonian are absent: 

X ~v(p-k)(ak+ap+apak+ak+a~kapa-p) }, 
k;&P 

where v(p) is the Fourier transform of the interaction 
potential. The pair Hamiltonian differs from the Hamil­
tonian of the Hartree-Fock approximation by the pres­
ence of the terms alta-kapa-p, corresponding to the 
creation of a pair of bosons with equal and oppositely 
directed momenta. Further, we carry out the transfor­
mation 

(8) 

where Bk1 and Bkz are operators and Nk and 17k are 
c-numbers. If in the pair Hamiltonian one discards 
terms quadratic in Bk1 and Bk2, the remaining Hamil­
tonian can be diagonalized by means of a Bogolyubov 
transformation. Further, the c-numbers Nk and 17k 
are selected by minimizing the thermodynamic poten­
tial of the grand canonical ensemble for a system with 
the Hamiltonian He· 

Wentzel[13 J has shown that the thermodynamic func­
tions obtained in this manner are exact for a system 
described by the pair Hamiltonian Hp in the thermo­
dynamic limit. The extremum of the (Gibbs) thermo­
dynamic potential occurs under the following condi­
tions: [ 14 J 

where fJ. is the chemical potential. 

(9) 

(10) 

(11) 

(12) 

(13) 

We list the expressions of the total particle number 
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N, of the energy E, and of the (Gibbs) thermodynamic 
potential 0: 

0= -PV= Uo+ T ~ In[1- exp(- e-../T)], (16) 

where 
k 

i 
Uo=- 2V ~{Iv(O)+v(p-k)]NJ<Np+v(p-k)Tt~<TJp} (17) 

k, p 

1 
xy~ (e~<-M. 

k 

Ep represents the quasiparticle energy, counted from 
tlie level of the chemical potential, and Nk is the aver­
age number of particles on the level with momentum k. 
In the pair theory there is also a breakdown of the gauge 
invariance, since the quasi-expectation values 1'/k 
= ( ata-k) = ( aita:k) may be different from zero. 

In order to consider the general case of a parallele­
piped with unequal edges Lx :-:= Ly :-:= Lz it is necessary 
to decompose all three -dimensional sums over k into 
four parts, as was done in Sec. 1 for the expression of 
N and only after that to replace in each part the sum­
mation by an integral. The four parts correspond: 1) to 
the condensate (the term of the original sum with k = 0), 
2) to the one-dimensional phase (the line integral along 
the axis ky = kz = 0), 3) to the two-dimensional phase 
(two-dimensional integral over the plane kz = O), 4) to 
the three-dimensional phase (three-dimensional inte­
gral). In l12 •141 a cubical region was considered, there­
fore the sums over k were decomposed only into two 
parts: the condensate and the three -dimensional phase. 
Below we shall restrict our attention to the case of a 
film (Lx = Ly > Lz), and therefore the sums over k 
will be split into three parts: 1) the condensate, 2) the 
two-dimensional phase, 3) the three-dimensional phase. 

Further, we assume that the interaction potential 
is a delta-function, i.e., 

v(p) = v. (18) 

For this situation the solution of Eqs. (9)-(13) under­
goes a considerable simplification. Owing to their non­
linearity, Eqs. (9)-(13) have several solutions. The 
first solution corresponds to the absence of any corre­
lations (1'/k = hk = 0) and the absence of a condensed 
phase, /(i.e., the condensate density 11o = N0/V decreases 
with the increase of the volume of the parallelepiped and 
for V- co, 11o- 0). The vanishing of correlations 
makes the pair theory completely equivalent to the Har­
tree-Fock theory. The quasiparticle energy 

llk=h=k"/2m-J.t.+2nv (19) 

differs from the energy of an ideal Bose gas by a shift 
by the amount of the interaction energy, which in the 
approximation used is independent of k. Therefore the 
solution without condensate leads to the same distribu­
tion of particles among the two- and three-dimensional 
phases as the ideal Bose gas:l 41 

(20) 

where 

:1: , t•-tat 
g.(z) = r( ) J-,-, s 0 e -z 

gt(z) = -ln(1-z), 

and A = (h/21TmT)112 is the thermal wavelength. The 
parameter z0 , which in the canonical ensemble depends 
on the temperature according to (20), is related to the 
chemical potential by means of the relation 

zo = exp{(J.I.- 2vn) IT)}. (21) 

The magnitude of the free energy F0 differs from 
the free energy of the ideal gas by a temperature inde­
pendent constant: 

Fo Q i 
-= f.ln--= nv- T.--[g.(zo)-gt(Zg)lnzo] v v "£;;..• 

T 
- ;,• [gs,,(zo)- g•,,(zo)lnZo]. (22) 

If one removes from (20) and (22) the terms which are 
inversely proportional to Lz, one obtains the equations 
for a cubical region Lx = Ly = Lz, in the absence of the 
condensate. In this case the equation (20) has a solution 
for z0 only at temperatures above the Bose-condensa­
tion temperature of an ideal three-dimensional Bose 
gas, T 3, temperature which is defined by the relation 

ni..a3 = g•,,(1) = 2.612, (23) 

where A3 is the thermal wavelength for the tempera­
ture T3• 

In the case under consideration here Lx = Ly > Lz 
the condensate-free solution exists up to the tempera­
ture Ta, determined according to l 41 from the relation 

1,3062!..( 1-( .!::..)''') =!!._luLu • 
T2 T3 L, ~ 

(24) 

If for fixed Lz one lets Lx = Ly go to infinity, then 
Ta- 0 and the solution without condensate exists for 
all nonzero temperatures. 

We now consider the solutions of the equations (9)­
(13) which yield a finite particle density in the conden­
sate, 11o = NofV. A necessary condition for this is that 
E0 = 0. 

In the presence of the condensate no * 0 there exists 
a solution without correlations, i.e., 1'/k = hk = 0 and 
fo = ho = O, which is equivalent to the usual Hartree­
Fock approximation. In this case in place of (19)-(22) 
there will be the following relations: 

1 1 
n =no+ nz+ na= no+ A.•L, gt(ZH)+ ;,aK't,(ZH), (25) 

ZH= exp( J.1.~2nv ) = exp(- ;ov), (26) 

FH ( no•) T -= n•-- v---[g.(zH)-gt(zH)lnzH] 
V 2 i..•L, 

T 
-Ts[g•,,(zH)- go,,(zH)lnzH], (27) 

k'l k2 
eo= /o= 0, ek = /k= -- f.l+2nv =-+noV, k=f= 0.(28) 

2m 2m 

In order to find the dependence of the free energy 
and chemical potential on the temperature, it is neces­
sary to find from Eqs. (25) and (26) the dependence of 
zH on T. From (28) it follows that the quasiparticle 
spectrum has a gap at k - 0. This gap is related to the 
fact that there is exchange interaction only for bosons 
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on different quantum levels. Therefore, for the parti­
cles in the condensate the gap is smaller by the amount 
of the exchange interaction with the particles in the con­
densate, 11ov, than for particles on levels with small but 
nonvanishing k. 

Finally, we consider the solution of Eqs. (9) -( 13) in 
the presence of the condensate 11o * 0 and nonvanishing 
correlations 71k * 0. As for the case of a cubical re­
gion, considered by Luban, l 14 J the relations obtained 
there hold: 

/o= -ho, 
'l]o 
y-=no (29) 

Let us consider the integral equations obtained from 
(9)-(13) for fk and Ilk which differ from Luban's equa­
tionsl 14 J in that they contain double integrals over the 
plane kz = 0, owing to the existence of the two-dimen­
sional phase: 

io = -f.t + nv(O) +F,(O) +Fs(O), 

h0 = -H,(O) -Hs(O); 
(30) 

for k * 0 

where 

k' 
j._ =- -1.1 + nv(O)+ nov(k)+F2(k) +Fs(k), 

::m 
h._= nov(k)- H2(k)- Hs(k), 

F,(k) = _ 1_ r I v(k- p) (l!>._cth ."'.~ -1) dpx dpy, 
'2h'L, J J Bp '21 

(31) 

F3(k) = ~ ~ \ ~ v(k- p) (!..!._cth 82~ -1) dpx dpy dp, 
2.h" • ep T (32) 

1 r r hp ep 
H2 (k)=-,-2 -J J v(k-p)-cth-:;:rdpxdp,, 

2h L, cp 

1 ~ ) ~ hp fp H3(k)=- v(k-p)-cth-dpxdp,dp,. 
2h' Bp 21' 

From (29) and (30) we obtain an expression for the 
chemical potential 

f.'=nv(O) +F2(0) +Fs(O) -H,(O) -H3 (0). (33) 

However, substitution of the constant v in place of 
v(k) in Ha(k) and Hs(k) leads to divergent integrals for 
finite values of hk· We therefore assume that v(p) = v 
for p < Pm and v(p) = 0 for p > Pm, and then go to the 
limit as Pm - oo. As a result we obtain 

h._-+ 0, H, (k) + Hs (k)-+ nov. (34) 

Taking (34) into account, the integral equations be­
come algebraic equations. The remaining computations 
lead to relations which are structurally analogous to 
the expressions (25)-(28), obtained in the Hartree-Fock 
approximation: 

1 1 
n =no+ n2 + ns= no+ 'A'L, g,(zp)+Fg't.(Zp), (35) 

Zp = exp ( !1 -T2nv ) = exp (- 2~v ) ' (36) 

Fp T 
-= (n2 - n02)v- --[g2 (zp)- g1 (zp)lnzp) 

V /. 2£, 

T 
--[g•~o(zp)-g'f,(Zp)lnzp], (37) 

'}..3 
/o = -ho = nov; 

k2 k2 
e .. =t .. =--~.t+2nv=-+2nov; k¥=0 (38) 

2m 2m 

Thus, allowance for the correlation leads to a gap 
twice as large as the gap in the Hartree-Fock approxi­
mation. We note that although the anomalous expecta-

tions 11 k• which are related to correlations, are vanish­
ingly small for k * 0 in the approximation under con­
sideration, the sums llp7Jp are not small, as follows 
from (34). 

As T- 0, according to (35)-(38), Fp- 0. Thus, 
the correlations are so effective in lowering the energy 
of the ground state that it becomes equal to zero, in the 
same manner as for the ideal Bose gas, i.e., the inter­
action does not lead to an increase in energy. The lat­
ter circumstance is related to the delta-like depend­
ence of the potential on the distance. Negligibly small 
pair correlations, sufficient to prevent the presence of 
two bosons at the same place, make the interaction in­
effective. 

An analysis of Eqs. (25)-(28) and (35)-(38) shows 
that in both cases there exists a temperature T m > T 3 

above which the solution ceases to exist, and below 
which the equations admit two solutions. If one consid­
ers 11o as a free parameter and searches for an extre­
mum of the free energy with respect to this parameter, 
as is done in Huang's bookl18 J in the analysis of the non­
ideal Bose gas according to the Hartree-Fock approxi­
mation, 1 > then one of the solutions corresponds to a 
maximum of the free energy, and the other to a mini­
mum. It is natural that only the second solution is sta­
ble. If one discards the terms associated to the two­
dimensional phase (i.e., one deals with a cubical re­
gion), the unstable branch of the solution exists only in 
the temperature interval T m > T > T 3• For the stable 
branches of the Hartree-Fock solutions and the solu­
tions with pair-correlations there is the inequality F p 
< FH· Thus, the Hartree-Fock solution is not stable. 2 > 

We now consider the problem of the Bose-condensa­
tion temperature Tc. In Luban's paperl 14 J the tempera­
ture at which the solution without the condensate ceases 
to exist is considered as this temperature. This means 
that in the approximation considered in the present sec­
tion this temperature equals the Bose-condensation 
temperature of an ideal Bose gas and exhibits anoma­
lous dimensional effects. It is however more correct 
to define the Bose-condensation temperature as that 
temperature where the solution with condensate becomes 
more stable than the solution without condensate, i.e., 
we shall define the temperature Tc by means of the 
condition F 0 (T c) = Fp(T c). 

For large Lz, T c is close to T 3 and the inequalities 
1 - z0 << 1 - zp << 1 hold. Therefore one may set z0 

equal to one, and for functions of zp one may use an 
expansion around the point zp = 1.l19 l The value of zp 
for the temperature Tc is obtained from the F0 (Tc) 
= Fp(Tc). Further, from (35) and (36) we find a rela-

I) The book [ 18 ) by Huang contains the incorrect assertion that 
free energy larger than T 3 does not exhibit a minimum with respect to 
n0 , which leads to the impossibility of a stable solution with n0 * 0 for 
T>T3 . 

Z) One can show that the Hartree-Fock solution in the presence of 
the condensate is unstable with respect to the formation of pair cor­
relations, in the same manner as the corresponding solution for the 
Fermi gas is unstable with respect to the formation of Cooper pairs. 
For this purpose it is sufficient to determine the energy of the state 
(a!; a!; -w ak a~k) (a/;) No 10 >,where 10> is the'vacuum state. This en­
ergy decreases with the growth of w from a value w = 0 corresponding 
to the wave function of the ground state in the Hartree-Fock approxi­
mation. Thus the Hartree-Fock solution is not even metastable. 
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tion between the temperatures Tc and T 3, expressing 
first n in terms of T 3 by means of Eq. (23 ): 

r;1·-r,"(, A., ( 3ii1) i__ ---~__::_ 
r'f, g•;,(1)=2 L, 1+ln~- 9 RlL,-oo 9 A.,, 

' a ( a2 9 a 4n2m (39) 
Rl=-x;+~ A.,•+zL,' a=---r!"v. 

For a temperature Tc the particle density Iloc in the 
condensate differs from zero and is equal to 

1[8 A.,] Hia 
nne=...,... -9 Rl+2-L r:-=-o:;'gt.,•• 

""c • z z c 

(40) 

The temperature T c defined in this manner for large 
Lz does not depend on the relations between the linear 
dimensions and is larger than the temperature T 3• Size 
effects occur only for sufficiently small Lz, when 

A,2 A, 
L,~-!n-. (41) 

a a 

Thus the pair theory predicts normal size effects. 
The same qualitative result could be obtained if one 

neglects the correlations and considers the usual Har­
tree-Fock approximation, defining T c from the condi­
tion F0(Tc) = FH(Tc)· In this case we obtain in place of 
(39) and (40) the relations 

T '1• T •;, A ( 3 in) 21 4 a 
8 ~' g.1,(1)=2L' 1+In~ - 9 R,r:-::;;;-g1:• 

T 2 z~ 9 z c 

' 2 (42) a ,/a a 
Ro=r+ v I"+9y-, 

' ' z ( 43) 
1[4 A.,] 8a 

noe = 'i3 gR• + 2y r:-=-C:9I"T. 
ll.c z z c 

CONCLUSION 

From what was said above it follows that the pair 
theory predicts normal size effects, whereas a theory 
with distinguished condensate predicts anomalous ef­
fects. In addition the pair theory leads to lower free 
energies whereas the theory with distinguished conden­
sate has no advantage insofar as the free energy is con­
cerned even when compared with the Hartree-Fock ap­
proximation. 3 > 

We note the following two circumstances: 
1. In the pair theory Ilo is different from zero at the 

point T C• where the state with condensate becomes sta­
ble (cf. (40)). Thus, there is a jump in Ilo· This cir­
cumstance presents interest in relation with the fact 
that in experiments with helium films discontinuities 
of the density of the superfluid have been observed at 
the point of appearance of superfluidity. l 81 

2. In the pair theory all states in which there are 
1/p2 type singularities in the momentum distribution 
are unstable for arbitrary relations between Lx, Ly, 
and Lz. Such states could occur at a temperature 
T 3 in the absence of condensate; however the state with 
condensate becomes stable for Tc > T 3 • 

Sometimes the fact that the existence of anomalous 

3 l The free energy in a theory with distinguished condensate has 
been calculated in [20 - 22 ]. 

expectation values ( aa> and (a;;) (or in the general 
form ( 1/J(r, t)) and ( 1// (r, t))) leads to a definite phase 
of the wave function is advanced as an argument in fa­
vor of the theory with distinguished condensate. The 
latter circumstance has been related in several pa­
persl 22 1 to the derivation of hydrodynamics of the su­
perfluid and of the equations describing the Josephson 
effect, which was first investigated for superconducting 
systems. However these derivations require only the 
existence of a definite phase difference between two ar­
bitrary points, and not the existence of a definite phase 
at each point. 

In conclusion, the author thanks A. K. Kudinov, G. E. 
Pikus, and Yu. A. Firsov for discussion and criticism 
of the problems touched upon in this article. 
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