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An exact solution of the Schrodinger equation is obtained for a quantum oscillator with a varying fre­
quency w {t), which is acted upon by an external force f{t). The time dependence of w {t) and f{t) may 
be arbitrary. The population distribution at the end of the process is calculated for the case when at 
t- - oo the oscillator was in the ground state I 0, w _). The quasi-energy spectrum for an oscillator 
with periodically varying parameters is determined. 

1. THE quantum oscillator is the usual representation 
of a specified mode of excitation of the electromagnetic 
field. Recently, the oscillator model has been widely 
used in considering the quantum theory of the laser, 
photostatistics of laser radiation, relaxation of coherent 
light in weakly absorbing media, and other questions of 
quantum optics (see, e.g., l 1 ' 21 ; more detailed refer­
ences to the literature may be found in l 2 ' 31 ). In this 
connection, a number of new worksl 2 - 61 devoted to the 
oscillator have appeared. 

Excitation of a quantum oscillator is possible both by 
the action of an external force, and by variation of the 
frequency (parametric resonance). The problem of an 
oscillator of constant frequency, acted on by a force 
f{t) which depends in an arbitrary fashion on time, has 
been considered in connection with problems of quantum 
field theory in the well-known works of Feynmanl 71 and 
Schwinger,l 81 In those works, formulae were obtained 
which describe the excitation of the quantized electro­
magnetic field {equivalent to an assembly of oscillators) 
by a classical current. The oscillator with frequency 
varying with time was the subject of the works. l 3 • 9 • 101 

It is important to emphasize that in both cases one suc­
ceeds in finding an exact solution of the problem. 

In the present work, we consider the general case, 
when a quantum oscillator of variable frequency w{t) is 
acted on by a (classical) external force f(t): 

o'l!J 1az,p {1 } 
i- = ---+ -w2 (t)x2 - f(t)x tiJ 

at 2 axz 2 
{1) 

(ti = m = !,everywhere). We shall suppose that the de­
pendence of w (t) and f{t) is arbitrary/> assuming only 
(everywhere except in Sec. 4) that the natural boundary 
conditions: 

f(t)-+0 as t-+±oo, 

w(t)-+ {w_ 
(t)+ 

as 
as 

t-+-00 

{2a) 

(2b) 

I) The Schrodinger equation (I) describes the most general linear 
quantum system with continuous parameters, possessing one degree of 
freedom (the time dependence of the mass parameter m(t) can be ex­
cluded, as was shown in [3]). According to Eq. (!),the force acting on 
the particle is f( t) - w( t)x, and any complication of it leads to non­
linearity. It is understood that the variable x can have the meaning not 
of a space coordinate, but, for example, the intensity of the electric or 
magnetic field. 
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are fulfilled (the limits may be different). We list the 
basic results obtained. 

In Sec. 2 we obtain formula (11), describing the evo­
lution in time of an arbitrary initial state. The wave 
function 1/J(x, t) at any moment of time is expressed in 
terms of the wave function 1/J- of the initial state, and 
the solution ~{t) of the equation of motion for the clas­
sical oscillator. One might say that for an oscillator, 
quantum mechanics reduces to classical mechanics 
(cf. l 7• 91 ). However, it should be noticed that the solu­
tion ~{t) is complex, and therefore cannot be regarded 
simply as a trajectory of the classical oscillator. In 
Sec. 3, the transition probabilities from the ground 
state I 0, w _) into final states In, w+) are calculated. 
These probabilities depend on the three parameters: 
p, v, and rp introduced in Sec. 2. Here, p depends only 
on the law of variation of the frequency w(t), v charac­
terizes the excitation of the oscillator by an external 
force, and cp is a phase angle. The case of non-periodic 
variation of frequency is dealt with in Sec. 4, where the 
quasi-energy spectrum of the oscillator is found. The 
nature of the spectrum of the quantum oscillator is de­
termined once that of the classical oscillator with the 
same law of variation of frequency is found in the re­
gion of stability. It is independent of the form of the 
force f(t). 

The problem discussed, apart from possible appli­
cations in quantum optics, is of interest as a quite rare 
example in which a non-stationary problem in quantum 
mechanics admits an exact solution in analytic form. 

3. We shall find the general form of wave function 
that satisfies the Schrodinger equation (1). Suppose 
f{t) = 0 initially. Denoting by ~(t) the solution of the 
classical equation of motion 

s+w2 (t)s = 0 

with the initial condition 

{3) 

s(t)-+ e"'-1 as t-+- oo, (3a) 

we set 

s(t) = r(t)eiV(t), r(t) = IW) I. {4) 

Then r(t) gives a scale of length at the instant t, and 
the quantity T = y(t)/w_ is the corresponding scale of 
thne. It is natural to look for 1/J (x, t) in the form 

¢(x, t) = [r(t)]-'he-i<I>(x,tJx-(y, ,;), y = x/r(t) {5) 
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(the factor r- 1 ; 2 ensures that normalization is main­
tained, and <I>(x, t) is a real phase). X- denotes an ar­
bitrary solution of the Schrodinger equation for an os­
cillator with constant frequency w_. We substitute 
Eq. (5) in Eq. (1) and require that the resulting equation 
does not contain terms ~ax_ /ax. This determines the 
function <I>: 

(6) 

and the equation for x_ assumes the form 

y 8"fr 1 87..- 1 [ ( r )2 a ( r )] i--=---,-+- w2+- +-- x"'l:-. 
W- 81: 2r2 dy 2 2 r dt _ r 

(7) 

Supposing next that 

w ;· . (t) 2 

y = ~ , r + w2 (t) =y2 = ----,:i-' (8) 

we see that Eq. (7) reduces to the required form: 

. Dz_ 1 ( 82 ) 
L-=- --+w-'y' X-· 

Dr 2 Dy" 
(7a) 

It remains to be shown that the conditions (8) imposed 
above do not contradict Eqs. (3) and (4). To this end, 
we introduce the quantity 

() + . . ~(t) . . ~ 
a t = a, w, = - l --ntf = y - l r (9) 

(a- w _ as t--oo), and notice that 

. 11(6, 6') UL 66; + s~' f 
a1 = -L2TIT' = ~· a2 =- Z/s/' r (lOa) 

1 Wl ( ) 
y(t) = 2i In £' (t) . lOb 

The Wronskian ~(~, p) = k~*- €*~ is independent of 
time, and has the value 2iw_, whence we immediately 
obtain the first of the relations (8). Further, since 

r _ a ( r) ( r )2 
-;: - dt ~I + -;:. ' 

we find, taking account of Eq. (lOa), that r/r = a~- a2 
= a~- w2 which leads to the second of the equations (8). 
Thus, we have shown that the general solution of the 
Schrooinger equation for an oscillator with variable fre­
quency w(t) has the form (5), with the phase <I>(x, t) 
= Y2a2(t)x2. Since r - 1, a2 - 0 and y(t) = w_ t as 
t--oo, X- in Eq. (5) is simply the initial wave func­
tion of the oscillator. If x _ is taken to be the n-quan­
tum state In, w_), Eq. (5) goes over into Eq. (9) of l 3 l, 

The force f(t) can then be taken into account follow­
ing Husimi (see formula (2.6) of l 3 J ). As a result, we 
obtain for the general solution of Eq. (1): 

.p(x,t)= 1 x-(X-TJ·•) 
1r(t) r 

xexp {iiTJ (x- TJ)- 1/ 2a2 (x- TJ)' +a]}. 

Here, r, a2 and T have the values given above, 
~ 

(11) 

a(t) = ~ L(t')dt', L = 1/2{~2 - w"rj2)+ /T] (12) 

(the phase a(t) is inessential to determine transition 
probabilities Wmnl, and 17(t) is the real solution de­
scribing forced oscillations of the classical oscillator: 

~ +<U2 {t)T] = f(t), 

TJ=TJ=O as t=to->--oo. 

The quantity 17(t) can be expressed in terms of f 
and ~. The Green's function for Eq. (3) is: 

1 
G(t, t'> = 11 <6x> rww {t')- 6' <tH(t'> 1 e(t- t'l, 

(13) 

where e(t- t') is the usual step function. Hence, taking 
account of the initial conditions (13), we find 

T] {t) = {2ul-)-''•{sd* + s'd). (14) 

Here, we have introduced the quantity d = d(t): 
. t 

d(t) = ! - ~ f(t')£ (t') dt'. 
12w __ = 

which will be important subsequently. The physical 
meaning is the following. Change from coordinate x 
and momentum p to the dimensionless variables 

and set 
X= (w / 2)'/•x, P = (2<,,)-'"p 

a= X+ iP = {2w)-'"(w.x + ip) 

(15) 

(16) 

(the complex a -plane will be called the phase plane). 
A state of the classical oscillator at each moment of 
time is represented as a point of the phase plane, and 
d(t) is the displacement of this point under the action of 
the external force. For an oscillator of constant fre­
quency w0 , we have ~(t) = exp iw0t, and Eq. (15) re­
duces to the expression already encountered in the 
works.l 7• BJ 

In what follows, we shall be interested in the transi­
tion probability Wmn for t- oo, when the frequency 
w(t) tends to the constant value w+' In this case, the 
expressions for ~(t) and 17(t) simplify. From Eq. (3) 
we have 

(3b) 

where cl and c2 are constants, for the determination 
of which we need to solve Eq. (3) for the classical os­
cillator in the whole of the interval - oo < t < oo. We 
remark also that ~(t) can be interpreted as the wave 
function for the problem of reflection by a barrier (see 
l 3 • 10 J for more details). With this interpretation, the 
amplitude of the reflected wave R is 

c, -
R=z:=1pe2i~ (O~p<1); 117) 

here we have introduced the reflection coefficient p 
and the phase 215 of the amplitude R. 

Given p and the ratio w+/w_, the moduli of the co­
efficients C1 and C2 are completely determined. 

c, = e;~, 1/ (/)_ 
v '''+(1- p)' 

C2 =e;~,y~­
'''+(1- f'), 

(17a) 

with 61 + 02 = 215. The amplitude of the forced oscilla­
tions 11 (t) satisfies the relation 

(14a) 

(see (14)), where 

-... 
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d =lim d(t) = iv e;~ 
t~oo 

(18) 

(the quantity 11 characterizes the perturbation of the 
oscillator by the external force). As will be shown in 
the next section, the transition probabilities Wmn de­
pend only on the three quantities: p, 11, and the phase 
angle <P = o - {3. 

3. We proceed to the calculation of the transition 
probabilities Wmn· We consider the case of greatest 
physical interest, when as t - - oo the oscillator is in 
the ground state I 0, w_). Substituting in Eq. (11) the in­
itial wave function 

( 
{i)_ \ •;, { (J)_ } 

x-(x,t)= ---;-) exp - 2 (x2 +it) , 

we find 

From this, we obtain for the probability of the tran­
sition 10, w_)- In, w+) 2) 

woo= (1- p)'h exp {-v[1- p'h cos 2<p]}, 

pn/2 
Wno = Woo--IHn(s) 12, zn n! 

where Hn(s) is a Hermite polynomial, and 

( 1 - 0 ) •;, [ ( 1 - p) v l •;, . 
s=d -- = --- e-'• 

2R 2 YP 

(20) 

(20a) 

(for the calculation we make use of the values of the in­
tegral (A.3) set down in Appendix A of [3J). We consider 
limiting cases of the distribution (20). 

1) If the external force vanishes, s = 11 = 0, whence 

W"n o = v 1- p f(n+'/z) pn 
· n f(n+1) ' 

(21) 

W2r,+I.O = 0, 

which is in agreement with l 3• 9 l. 

2) For an oscillator with constant frequency w(t) 
= w0 , we have p = 0, s - oo, and the formula (20) be­
comes the well-knownl 7l Poisson distribution: 

(22) 

3) If the frequency w(t) varies adiabatically (i.e., 
w-2dw/dt << 1; this need not imply that the ratio w./w_ 
is near unity), then the reflection coefficient p is ex­
ponentially small. In this case, the distribution of tran­
sition probabilities differs from (22) by a term ~..;p. 
The corresponding formula for Wno can be obtained 
from Eq. (19) in l 3 l by the change (<P-o)- <{J. 

4) Suppose next that p - 1 (limiting case of abrupt 
change of frequency). Then the oscillator is strongly 
excited, and the transition probabilities wno are essen­
tially concentrated in the region n >> [11(1- p)] 112. To 
simplify Eq. (20) we use the asymptotic expansion for 
the Hermite polynomials in the case when the argument 
is much smaller than the index (see l HJ, line 254). Sup­
pose <P = 0 initially. Introducing the variable K = 1 -.fP 
(K- 0), we find s = ..fVK, 

Z) The transition probability Wno gives also the population of the 
n-th levei fort~+ oo. 

(23) 

where .Pn =,I 2niiK- mr/2 is a rapidly oscillating (for 
n >> 1) quasi-classical phase. The distribution Wno, 
averaged over this oscillation, has the form 

Wno = (x/nn)'l•e-nx ('I'= 0). (24) 

The case <{J * 0 is considered similarly. In summary, 
we arrive at a single formula describing the behavior 
of the transition probabilities Wno (averaged over the 
rapid oscillations): 

(25) 

where n0 = (II/K)(1- cos 2<{J). If 11(1- cos 2<{') >> 1, the 
expression (25) becomes a Gaussian distribution with 
center at n = fio and dispersion ~n2 = 2n0/ K, with 
-1/2 ( ~n2 ) << n0 • For 11(1- cos 2<{') << 1, it reverts to 

the exponential distribution (24). 
In calculating the transition probability Wmn with 

m, n > 0, a straightforward use of the expression (11) 
for 1/J(x, t) leads to too complicated an integral. How­
ever, it can be shown that the probabilities Wmn for ar­
bitrary numbers m and n depend, as before, only on 
the parameters p, 11 and <P introduced above. 

4. Finally there remains the question of the quasi­
energy spectrum of the oscillator with variable w(t) 
and f(t). In those cases when the Hamiltonian depends 
periodically on time, there exist solutions of the Schro­
dinger equation which change back into themselves after 
a period T, multiplied only by a phase factor 

(26) 

(for any value of t). The quantity E is called the "qua­
si -energy''. l 12-14 l For processes proceeding under the 
action of a field that is periodic in time, 3 ) the quasi­
energy plays the same role as the energy in the sta­
tionary case. 

Consider the quantum oscillator with periodically 
varying frequency and force: 

w(t+T) =w(t), f(t+T) =f(t). (27) 

According to Floquet's well-known theorem of mechan­
ics, linearly independent solutions ~ 1 and ~ 2 of Eq. (3) 
can be constructed such that 

(28) 

where u1 and u2 are periodic functions with period T, 
and A is either real (zone of stability) or pure imagi­
nary (zone of instability). 

In the zone of stability, A > 0 and ~ 2(t) = H' (t). 
Choosing X- in Eq. (11) as then-quantum state of an 
oscillator with instantaneous frequency a1 (t) (see 
Eq. (9)), and 17(t) as a periodic solution of Eq. (13), we 
obtain the wave function of a state with a definite value 
of quasi-energy: 

en= (n+'i2)J.+l1e (n=0.1.2, ... ), (29) 

where 

J) For example, the ionization of atoms, and also the displacement 
and splitting of atomic levels by an intense light wave (from a laser). In 
this connection see [14 ], in which the quasi-energy spectrum for the 
hydrogen atom is determined in perturbation theory (under the con­
dition that the wave field is significantly weaker than the atomic field). 
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1 T f 2l 

M = -T ~ L(t)dt =- 21' ~ /(t)TJ(t)dt. (30) 
r o 

Thus, the quasi-energy spectrum of the oscillator is 
evenly spaced, and the magnitude of the "quantum" A is 
completely determined by the form of w(t), and is inde­
pendent of the external force. In order to determine A 
it is necessary to solve the equation of motion (3) of the 
classical oscillator. Thus, for example, if the frequency 
changes according to the law 

(J)(t) = wol'1 +4hcos(J)t, 

where w = 27T/T and -1 < 4h < 1, then Eq. (3) leads to 
Mathieu's equation 

x+ (a- 2qcos2-r)x = 0 

with parameters 

a=(Z:oY. q=-Bh(:"Y. "C=w;. (31) 

The theory of Mathieu functions is established in every 
detail, l 15 J and the value of parameter A as a function 
of a and q is known. 

In particular, as h- 0 we have 

{
VB2 -h2,, i.f W=2wo(1+e)ande--.O 

'A= roo X 4w 2h2 

1- 4w3-w•, if w is not close to 2w0 

(32) 

(the case of frequencies w close to 2w0 corresponds to 
parametric resonance). If the point (a, q) approaches 
the boundary of the zone of stability, A- 0. 

The inclusion of a periodic force f(t) leads to an 
overall displacement of the quasi-energy spectrum by 
an amount .!\€. As is well-known, the periodic solution 
of an equation of the type (13) is unique, so the dis­
placement .!\€ is uniquely determined. 

The quasi-energy spectrum of the quantum oscillator 
in the zone of stability is described by the formula (29). 
If the law of variation of frequency w (t) is such that the 

corresponding classical oscillator lies in the zone of 
instability, then the quasi-energy spectrum is continu­
ous, and the magnitude of the displacement £\€ is of no 
interest. 
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