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The two-level model of an atom near the generation threshold is used to derive the equation and to 
determine the photon density matrix of the radiation field of a gas laser with a ring resonator. 
Feedback between opposite waves that arises on reflection at the resonator mirrors is taken into 
account. The dispersion of the total number of photons, the dispersion of the number of photons in 
each of the directions, and the correlation function for amplitudes of the opposite waves, which de­
fines the mean phase difference between them, are all determined as functions of the difference be-
tween the frequency of the resonator and the transition frequency. · 

1. INTRODUCTION 

THE quantum theory of lasers with resonators of the 
Fabry-Perot type has been developed in sufficient de­
tail (see, for example[l-31 ). From the point of view of 
the statistical properties of the radiation, interest at­
taches to a gas laser with a ring resonator. Its dis­
tinguishing feature is the presence of a degree of free­
dom for opposing waves and weak feedback between 
them, giving rise to different generation regimes. 

From experiment and from the quasiclat:sical 
theoryr4- 81 it follows that near the center ot the Doppler 
amplification line there is realized, besides the stand­
ing-wave regime, also a traveling-wave regime with 
different amplitudes. The region of stability of the 
traveling-wave regime is determined by the feedback 
coefficient and becomes narrower with decrease of the 
latter, tending to the center of the amplification linef 61, 

When no account is taken of the feedback, the quasi­
classical theory predicts the regime of unidirectional 
radiation in the frequency-deviation region I w - wo lh 
< y/ks ( y-characteristic lifetime of the excited atom, 
ks-Doppler width, w-resonator frequency, w0-transi­
tion frequency of the atom). In this region of the fre­
quency deviation, the spatial modulation of the occupa­
tion number comes into play and leads to instability of 
the standing wave. A semiphenomenological approach 
to the theory of the ring laser, connected with intro­
ducing noise sources into the equation of motion, has 
been developed in[ 91, where the "anticorrelation" of 
the opposinf waves, which has been observed experi­
mentallyr10 , is explained. 

The purpose of the present paper is to develop a 
rigorous quantum approach to the theory of the ring 
laser near the generation threshold. The photon den­
sity matrix is sought in the photon occupation number 
representation without account of feedback. For a 
laser with feedback, the investigation of the density 
matrix is carried out in the representation of the co­
herent stage (P-representation)fu, 121. Below the gen­
eration threshold, the radiation is ordinary quantum 
"noise" (black-body radiation). At the threshold, the 
relative fluctuations of the total radiation intensity, as 
well as in each of the directions, are of the order of 
unity. Above the threshold, the relative fluctuations of 

the intensity of the opposing waves are always larger 
than the fluctuations of the total energy, and on ap­
proaching the center of the amplification line it as­
sumes the value on the order of unity. The relative 
dispersion of the total energy is small in the entire 
detuning region. 

2. EQUATIONS OF MOTION FOR THE PHOTON 
DENSITY MATRIX 

We represent a ring laser as a medium consisting 
of N two-level atoms (N spins), in which two electro­
magnetic waves with wave vectors q = ±k propagate 
(k = w/c). To describe the interaction of the opposing 
waves at the mirrors, we shall use the model of 
coupled oscillators and represent the Hamiltonian of 
the system in the form ti = 1) 

~ N 

II= :3 wcS;+S;- + w ~ aq+(a9 + e'a-q)+g ~ A;(S;+-S;-),(1) 
j::----;;1 !J=±.~ jc:1 

A,= i ~ (aqeiqrJ- aq+e-iqrJ). 
q=±k 

Here sj and Sj are the matrices of spin flip upward 

and downward, a.Q and aq are the operators of photon 
creation and anninilation, rj = rj + vjt is the coordi-
nate of the j-th atom, Vj is its velocity, g = d.J2ww0/Vo, 
d is the dipole moment of the transition, Vo is the 
volume of the system, and € 1 is the feedback coeffi­
cient. For ordinary systems such as an He-Ne laser, 
w€' ~ g ~ 103-104 sec-1. 

Since the analysis of the problem is limited to the 
near-threshold regime (low radiation energies), the 
equation for the photon density matrix p is determined 
from perturbation theory accurate to fourth order in 
the interaction constant g. Omitting the intermediate 
calculations (see, for example, [1' 31), we present the 
final result: 

p =- ie'w ~ [a0+a_q, p] + 2~ ~ [aq, paq+]- ~: g2 ~ (N+(aq, a0+p] 
q q q 
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- N- [aq, aq +a_qpa-q + + pa_q +a_qaq +])} + h. c. (2) 

Here N+ and N- are the numbers of the excited and 
unexcited spins, .:lN = N+ - W(.:ln >> ..fN), 
1i = ( w - w0 )/y, and Q is the quality factor of the reso­
nator[l1. In the derivation of the equation it was as­
sumed that w/yQ, 5/ks, y /ks « 1; the small factor 
(ksf3 was retained only for terms that are quadratic 
in the number of atoms. However, in the assumed ap­
proximation, the term with (.:lN)2, describing the col­
lective effects in the spontaneous emission of the 
atom [JJ, is immaterial and introduces a small correc­
tion to the generation threshold. 

3. PHOTON DISTRIBUTION FUNCTION IN A RING 
LASER WITHOUT FEEDBACK 

In this section we shall seek the solution for the 
diagonal elements of the density matrix 
( nk, n_k IP Ink, n_k) = Pnk, n_k without allowance for 
the feedback, €' = 0. In this case the equation (2) for 
the diagonal element takes the form 

(3) 

. ( (1 + :;) . -
Qnq, "-q = (nq + 1) 't Pnq+l, •-q-~(N' Pnq "-q- N Pnq+l. n_q) 

(1+£) [· . . (n-q+1) 
+~-~ 2(nq+1J(N•p"q·"-q-N-p,,1 +t,n_q)+ 1 + 62 · 

X (N+r,q ·"-q- N-p"q· "-q+•) + 1 ~:~, (N+p,,+,, "-q-•- N-pnq+t, "-q)]}. 
(4) 

Here ~ is the relative excess of the pump over the 
threshold ( ~ « 1) and {3 is the saturation parameter: 

2 )t;'g'Q \N g' (5) 
~= 1, B =--;-, 

wks y-

nk and n_k are the numbers of the photons in the op­
posing waves. 

The stationary distribution function Pnk, n_k is 
found from Eqs. (3) and (4), using the condition for the 
absence of a probability flux :ZqQnq, n_q = o[ll. In the 
quasi-classical approximation (( n) » 1) 

,y+ P 2 2n,n-k 
·-In-= s(n,, +Il-k)- B(nh' + ll-h)- p 1 + ., . (6) 
1'1N Po u 

where Po is a normalization constant. As seen directly 
from Eqs. (2)-(4) and the solution (6), the distribution 
function is symmetrical with respect to the variables 
nk and n-k· 

Below the generation threshold ( ~ < 0, I ~ I « ..f/3), 
the radiation in the two directions is statistically inde­
pendent 

p(nk, Il-k)= p(nk) p(n-k) 

and constitutes black-body radiation with effective 
temperature T = w/ I~ I [ll. 

At the generation threshold (I~ I « ..({3) the com­
plete distribution function cannot be represented in the 
form of a product of the distribution functions with re­
spect to the directions. The relative fluctuations in 
this case, as in the preceding one, are of the order of 
unity. The dispersion of the total number of photons 
n = nk + n_k is 

<(1'1n)2) = ~ 1'2 +/Fare tg _IIII_J 2(1 +II') arc tg 1111 + 1] -1, 
(n) 2 :t 161 r'2 + 62 L 161}'2 + 112 }'2 + 112 • (7) 

(n) = 'fnlol /arctg 161 --· 
2 1'~ 1'2 + o' 12 + o' (8) 

The dispersion of the number of photons in each of the 
directions is 

((~n"F) 4 (1 + o')l'2 + 62 Jol 
-'-'---'--'-- =- arc t"'-= 

<n,Y " I o !3 1'2 + o' (9) 

x[ 2 ( 1 + cY) nrctg l_o~--- _1_] _ i, 
Jc'>lr'2+o.' -.-:~+11' 1+1i' 

(n") = (n) /2. 
Greatest interest attaches to an investigation of the 

statistical properties of the radiation in the generation 
regime ( ~ » ..({3). We note first that the points nk: and 
n~k• which determine the position of the absolute 
maximum p ( nk, n_k). are connected by the classical 
stationary equations: 

6- 2fl(nk0+~)= U ~-2B(n-n°+~) = 0. (10) 
1 + 62 • - . 1 + 1\2 

As is well known[ 7 • 8l, the stationary solutions of (10 ), 
describing a standing wave, are stable only in the case 
of sufficiently large frequency deviations. Near the 
center of the line, this regime is unstable because of 
the influence of the spatial inhomogeneity of the occupa­
tion numbers. It is easy to see how the form of the 
distribution function changes when account is taken of 
spatial modulation. To this end it is necessary to re­
place the parameter ( 1 + 1i 2 f 1 in formulas (6) and (7) 
by J.l + (1 + 1i 2 t\ where J.l = (y/ks)2 (J.l ~ 10-3 for the 
He-Ne laser[7 ' 8l). 

Depending on the frequency, one can separate three 
characteristic regions with different statistical prop­
erties of the radiation: 

1) 02 - fl~YfJ/~. 
2) o' = ~~. :l) ~~- o' ~ l'll/:;. 

In all three regions, the relative dispersion of the 
total number of photons is always small: 

(("'-n) 2) / (n) 2 = 1/ (n):;, (11) 

(n)=£1P[1+1l+ 1! 6,]. (11') 

Owing to the symmetry of the distribution function with 
respect to the variables nk and n-k, the average 
numbers of photons and the dispersions in the opposing 
waves are always equal: 

(n1,) = (1>-k) = (n) /2, (12) 
(( "'-n~<) 2) = ((c'ln-k) 2). 

It should be noted, however, that ( nk ) does not always 
correspond to the maximum of the distribution func­
tion. This is the cause of the strong dependence of the 
dispersion of Il.±k on the frequency near the center of 
the line. 

1. At large detunings 52 > J.l we have 

< ("'-n ) ') = (n) 1 + 02 (13) 
h 2~ o' · 

2. On the boundary of the instability region of the 
standing wave 1i 2 = J.l we have 

((L\nk) 2)=(n)2/12. (14) 
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FIG. I 
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3. At small detunings o 2 < j.J. we have 

(( i\nh)2) = (n) 2 /4. (15) 

The condition 1> 2 < f.1. determines the frequency region 
in which the standing wave (12) is unstable. We see 
that when o2 s f.1. the relative fluctuations of the in­
tensity in the opposing waves become of the order of 
unity. 

The dependence of the dispersion of the number of 
photons in one of the directions on the parameter o 
can be traced more clearly by determining p(nk): 

oo ~(1-t-v)[ s ]2 

p(n•)=Po~dn-kexp{- 2 n-~(1-t-v) 
0 

~(1- v) ( )z} 
2 -nh-n-h, 

,. ==II+ 1/ (1 + 1)2), Jli+ =!iN. (16) 

Figures 1a, b, and c show plots of p(nk) for 6 2 » J.J., 
1) 2 = f.J., and f.1. - o2 » ~~~ respectively. The curve 
in Fig 1a describes the distribution of the radiation in 
one direction in the standing-wave regime; Pb de­
scribes the generation in the position of indifferent 
equilibrium, when the amplitude of the radiation in one 
of the directions can be arbitrary while the total energy 
is conserved. The lower curve has two sharply pro­
nounced extrema, the areas under which are equal, 
corresponding to unidirectional radiation (the radia­
tion directions are equally probable). On the other 
hand, since the function pc(nk) is continuous and Pc 
> 0, there is the finite probability of a transition from 
the state with nk = 0 to the state with nk = ( n) (or 
vice versa), as a result of the finite repetition time of 
the large fluctuations. In other words, from the statis­
tical point of view, the states with nk = 0 and nk = ( n ) 
are quasistationary. 

We assume that, the time of transition from the 
state nk = 0 to the state nk = ( n ) is of the same 
order as the repetition time of the state nk = ( n) /2 [131 : 

To=r:o/ {n)p.({n) /2), (17) 

where To is the probability that the photon will leave 
the specified volume in a unit time. In our case, To 

coincides in order of magnitude with the lifetime of 
the photon in the resonator To ~ Q/ w. Then at reso­
nance we have (I> =0) 

To-___!]___< )exp(62~-t/8~). (17') 
w6ft n 

For the values ~ = 10-\ {3 = 10-\ f.1. = ( Ya) X 10-2, 

and w/Q = 10-6 sec-1 we get T0 ~ 10-2 sec. 
As seen from the calculations, there is a strong 

correlation between the intensities of the opposing 
waves. Following[9 ' 101 and taking (12) into account, we 
determine the correlation coefficients in the following 
manner: 

Since 
((n, -1Lk) 2) = 4(( L\n,) 2)- ( (1n)2), 

we obtain, using formulas (11)-(15), 

Ko= -1/ (1 + t'\Z). 

(18) 

(19) 

(20) 

Qualitatively, the dependence of Ko on o coincides 
with the results of[9 f. At the generation threshold (7 )­
(9) at the center of the line ( o 2 « 1) we have Ko 
= - ( 31T - 8 )/ ( 16 - 31T ). With increasing detuning 
( o2 » 1) the correlation coefficient tends to zero: 

Ko = - (rt2 - 4rt + 8) I 6'n (rt- 2). 

Below the generation threshold (I~ I » ~) we have 
Ko = 0. The fact that the correlation coefficients in­
troduced above turns out to be negative has a simple 
physical meaning: at a well defined total energy, the 
total dispersion of the photon numbers of each of the 
directions is always larger than the dispersion of the 
total number of photons. 

4. ALLOWANCE FOR FEEDBACK 

The solutions of (2) with allowance for feedback 
without spatial modulation can be greatly simplified 
by changing over from the representation of the occu­
pation numbers Il±k to the representation of the co­
herent states[ 3J (the P-representation[11' 12l): 

p ~~ S P(zk,z_n) n Jzh)(z.jcl2z,, (21) 

=· where I Zk) are the eigenfunctions of the operators ak 
( ak I zk ) = Zk I Zk ) ). 

After substituting the density matrix (21) in (2) we 
obtain for the distribution function P the Fokker­
Planck equation 

aP w "" \" 1 ) 0 -+- 7, ( 'q q-t-C.C. = , 
{)t '2Q q.::h 

. 1- 12 \'+ lq'=[~zq-iEZ-q-2pzq(Jz9 J 2 -t- 1 =~6 )]P- ~N YqP, 
Vq=~-(-a--i-a-). e=2e'Q. 

2 axq ayq 

(22) 

(23) 

In the derivation of (22) and (23) we took account of the 
fact that I ~ I « 1; in this approximation, the diffusion 
coefficient does not depend on the field. 

As is well known from quasiclassical theory, the 
total energy of the opposing waves is well defined in 
the entire frequency region o, regardless of whether 
feedback is taken into account or not. In the language 
of Eqs. (22) and (23), this means that the dispersion of 
the total energy is smaller than the dispersion of the 
energy in each direction. For example, when E = 0 and 
I o I < ../\(An)2 )/( n), the field energy in one direction 
is not defined completely (see formulas (14) and (15)). 
For this reason, it is advisable to separate in (22) and 
(2 3) the parts connected with the total energy. To this 
end, we go over to the coordinate system 
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e (<r 'Ill' 
Y• = yn sin-zsin z +.z-), (24 ) 

-- 0 ( <p "' ) y-_k = ,1ncos-sin --- , 
1 2 2 2 

where n determines the total number of photons, cos e 
the relative difference (n_k- nk)/(nk + n_k), and the 
angles cp and 1/J correspond to the difference ( 'Pk - 'P-k) 
and the sum (cpk + 'P-k) of the phases of the opposing 
waves. The choice of such a non-orthogonal system of 
coordinates is dictated by its lucid physical meaning, 
and also by the simplicity of the quasiclassical equa­
tions of motion in terms of these variables (see, for 
example, r 141 ). 

In the new system of coordinates, Eqs. (22) takes 
the form 

Q iJP 1 a { [ (2 + o') ( o" cos' e)] uP} 
---;~-ot+--;-a;n' P s-(1+o?Jf~n l-1-_ 2+o2 - un_ 

+ - 1-_!!_ sin 0 {nP( ~ 1102 sin 0 cos 8- e sin <r) - OP} 
n si II 0 <JO l + o' <JO 

+ --1 -. _ _!!_f nl'( ~sin 0- e cos<r \sin 0 cos 0-
nsin-tlil<r~ L+o' / 

-(!!'_+cos u fJP_)1J_ + __ l __ i!__ fnP (~sin 0- E cus<r) sin 0 
t!<p i)~- n ,;in 2 1:l <llj• t 1 + 1> 2 

-(!,~+cos e !!...)1_r= o. 
<hi' c'<r 

(25) 

For simplicity it is assumed here that N+ =AN. The 
results obtained subsequently can be readily general­
ized to the case N+ ""AN by multiplying the diffusion 
coefficient by N+/ AN. 

It is easy to see that when E = 0 the stationary 
solution of Eq. (25 ), which depends on n and e, can 
be determined accurately: 

P(n,O)it-o=Poexpn[~-_G±b')~n(1+ o'cos'O)]. (26) 
(t--+- oc) 2 2 + o' 

When this solution is substituted in (21 ), we obtain 
formula (6) for the photon distribution function 
p ( nk, n_k) in the occupation-number representation. 

In the case ( n )E « 1, which takes place below the 
generation threshold ( ( n) = 1/ I ~ I), the dependence of 
the stationary distribution function on the angles e and 
cp can be obtained by expanding the solution in powers 
of E. 

Above the generation threshold, where ( n )E >> 1, 
Eq. (25) can be simplified. We note for this purpose 
that the relative difference of the energies of the op­
posing waves is small for all frequencies up to I o I 
~ {{3/~ or I o I ~E. This means that I cos e I « 1 
everywhere, with the exception of the frequency regions 
I o I ~ E and I o I ~ ~I~, where I cos e I ~ 1. How­
ever, o2 cos 2 e << 1 always. For this reason, it is pos­
sible to neglect the term o 2 cos 2 e in the radial part of 
(2 5 ), or else replace cos e by cos e 0 in the case (33) 
when a stationary value cos e 0 "" 0 exists. Further, in 
the angular part of the equation, it is possible to re­
place n everywhere by ( n), since the relative dis­
persion of the total energy is small. Then the angular 
and radial variables separate, and the solution takes 
the form 

P = F(O, <p, ljl, t) exp [ -s(n- <.n>) 2 I <n)]. 

(n) =-_L(!+o')__( 1-o2 cos2 0o\. 
~ u + o2 1 ~ + IF , 

(27\ 

A similar separation of the variables is possible also 
for the classical equations of motion. 

Let us consider the stationary solution of (25). In 
this case the angle part of P can depend only on e and 
cp ( F = Fo( e, cp )), since the stationary behavior means 
that ( ak ) = ( a_ k ) = 0. The condition for the absence 
of a probability flux, which follows from (22 ), takes in 
the general case the form 

J =rot :\I, (28) 

where M is an arbitrary vector. Using the approxima­
tion (27 ), we obtain for F0 ( e, cp) the system of equa­
tions 

iJFo J iJJ/,. ( ~2 e \ -------= (n) 1; --sin0cos0--sin<p 1Fo, 
JO :;inO cl<f 2-i-b2 £ ' (29) 
cJJI n 1 DFo ( b E ) , --+ ----= \n) s cos 0 --sin 0 --cos 'f f o, 

JO sin 0 J<r 2 + ,\2 ~ . 

where Mn is the radio component of the vector M. 
We note that when E = 0 we get Fo = Fo( 6) and Mn 
= Fo/0. 

We seek the solution of the system (29) near the 
stationary values of 6o and cp 0 , determined from the 
condition a F 0 /a 6 =a F0 /'0cp = 0. Then Mn = cF0 , 

where c is a constant. From the condition of the com­
patibility of the system (29) we determine the value of 
c: 

c = __!__ -(2 + b')~~s<po sin Oo 
b ~b' 3sin2 0o- 2 

(30) 

Let us examine the behavior of the distribution func­
tion F o( e ' cp ) at small detunings I 0 I « 1. In this 
region there can exist both a standing-wave regime 
cos 6 0 = 0, and a traveling-wave regime cos 6 0 "" 0[61 • 

For the standing wave sin 6 0 = 1 and cos 6 0 = ± 1, 
we have 

-In(!..?~) ~ (n) ~02 {[( 1 _ s<'l cos <j)o) 
i'., 4(l-(~o/4E)roS<fn) 2r (31) 

xf 1- ~-~s<r.,_·) + .'l's'} (O- flo)' 
\ 4e 'lr2 

~IF ' . ~I\ cos 'Po ) } +-;--cos<po(q>-<P,)(e-eo)+lt- (<p-<p0)2. 
2e \ 4e 

We see therefore that for frequencies I o I > 2E/ ~ 
there exists one stationary solution cp o, determined by 
the condition o cos cp 0 < 0. When I o I < 2E/ ~ there 
exist two stationary solutions cos cp o = ± 1, and F os 
describes the distribution over the phases near cp ""' 0 
or 1T. In the frequency region ( 1 - ~ I o l/2.-::) Z 2{3/ .-:: 2, 

the solution (31) is not valid, since the relative fluc­
tuations of cp and e near cp 0 and eo become of the 
order of unity. In the classical theory, this region 
corresponds to an indifferent equilibrium positionr 61 • 

The solution (31) is likewise not valid at the center 
of the line I o I ;:::; {{3/ ~. In this case it is possible to 
use perturbation theory, expanding the solutions in 
powers of o. In the zeroth approximation we obtain 

Fo = consl, Mn = -<n>d'o C(IS <p Sill e. (32) 

Thus, at resonance the stationary distribution function 
depends only on the total energy. Indeed, as follows 
from the classical theory, an exact resonance over the 
total energy has a stationary value, and the relative 
difference of the energies of the opposing waves and 
the phase difference vary periodically in time. If the 
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feedback coefficient is very small € ~ ~. but ( n )€ 

» 1, i.e., the binding energy becomes comparable 
with the dispersion of the total energy ( n )€ 
~ ~{((~n)2 ), then the definition of the stationary phase 
difference becomes meaningless. In particular, the 
regions of strong fluctuations near 6 = 0 and 6 = 2£/ ~ 
overlap. In practice, however, the condition € >> ~ 
is always satisfied ( € ~ 10-2, (:3 ~ 10-7 ), i.e., the sta­
tionary phase difference is well defined. We shall 
henceforth assume throughout that € » .. r(3. 

The solution describing the traveling-wave regime 
is given by[6l 

sinBo= ~ 21 8 1 . sin<ro=l6lciJs00, cos<ro=(t- 62 cosoo)sign6 . 
., 6 :l {33) 

The total traveling-wave energy is smaller than the 
energy stored in the standing wave (27) 

nt = .lJ 1 + ()2sin2 Oo). (34) 
2~ \ 2 

From (29) we obtain the distribution function near the 
stationary state (33): 

(n) 01)2 ("3 sin2 o.- '>) 
-ln(F0t/l'o)=--·- ~ . , ~ [(8-tlo),2 cos'Ou+(<p-'fn) 2 sin2 8o]. 

4 (.!-sm·!lo) (35) 
In the last expression we have discarded, for sim­
plicity, all corrections of order of 6 and 62 ; these 
will be taken into account later in the calculation of 
the mean values. 

From relation {35) follow the conditions for the 
stability of the solution (33 )[6l 

:l ,r,- £ 28 {36) 
sin' flo> ·;r· r6T > 161 > T" 

When ~ 161 = 2£, the function Fot coincides with Fos 
for cos cp 0 = sign 6. Further increase of the detuning 
~ I 6 I > 2£ leads to a splitting of the maximum of the 
distribution with respect to fl near the value cos cp o 
= sign 6, and to the appearance of two new maxima in 
fl (cos fl 0 ~ 0 ), corresponding to equally probable 
states with nk ~ n-k· The boundary between one sta­
tionary reg!me fl 0 = 0 to the three regimes cos flo = 0 
and cos fl 0 ~ 0 becomes smeared out as a result of the 
fluctuations. The stationary state {33) will be well de­
fined if 

icos9ol ~~~/e2• 

The solution (35) is not valid at the stability boundary 
I 6 I = .f6£/ ~ • The condition 

1 - 3 cos2 00 ~ ~ I e2 

determines the width of the stability boundary. We 
see that the region of strong fluctuations near cos fl 0 

= 0 is much broader than near cos flo = 1//3. 
We proceed to calculate the average intensities of 

the fields and their fluctuations. The average value of 
a certain function of the operators ak and aic is de­
termined by integrals of the type (21 ), in which the 
stationary solutions (31) and (33) are saddle points. 
Noting that the introduction of € does not change the 
general relations {12) and (19 ), and that the relative 
dispersion of the total energy is small in the entire 
frequency range and is determined by formula (11 ), we 
present the final results. 

1. For the frequencies 2£/ ~ > I o I » ~/ ~ we get 
from (2 7) and (31) 

(n) [( ~6 )'( s6 )''' ( 66 )2( £6 )'h] ((t.n.)2)=- 1-- 1-:--;- +·1+- 1--
~62 4e 2e \ 4e 2e 

( £26' )-'[( so)( so )''• ( so\( £6 )''·]-' X 1-- . l-- 1+- + 1+- 1--
4e2 4e 2e · 4e / 2e ' 

s ( ()2) (n) =- 1+- . 
2fl 2 

The correlation function of the amplitudes of the op­
posing waves is given by 

((a.•a_.)m)/((nk) (n_.))mt• = (cosm<p) = 

(37) 

l, m = 2l (3B) 

(s6/2e)• . m=2l+1 

2l ( 1-:: )(t + ~8 )"' + (I+!~) ( i- ~~) '''] 
2. In the frequency region .f6£/ ~ > j6 I > 2£/ ~ we 

get from (27), (31), and (35) 

{39) 

{40) 

{41) 

(1 + 2 sin 00) (3 sin2 Oo- 2) (1- sin Bo)''• 
i> (Oo) = · {42) 

2 (2- sin" Oo) (sin Bo) ''• 

It is seen therefore that the fluctuations in each of the 
directions are large, and ( n) is close in magnitude to 
the average number of photons in the traveling waves 
(34), since 0.3 > J.( flo) 2:: 0. 

The meaning of relation (39) can be explained in the 
following manner. Unlike the preceding case (37) a 
traveling-wave regime exists in the region .f6£/~ 
> 161 > 2£/~ besides the standing wave. The relative 
dispersion of the distribution function near the states 
{31) and (33) is small, i.e., both the traveling and the 
standing waves are stable against small fluctuations. 
However, the large fluctuations occurring after a suf­
ficiently long time, will change the system from one 
state to another. It is difficult to determine the aver­
age repetition time of such fluctuations (16) in this 
case, since for its determination it is necessary to 
know the magnitude and the position of the minima of 
the distribution function. 

3. At large detunings 161 » 16£/~ the average 
energy and the dispersion coincide with expressions 
(11) and (13) at JJ. = 0. The role of the feedback re­
duces to the appearance of a strong correlation between 
the amplitudes of the opposing waves 

(cosmq;) =(-sign 6)m. {43) 

The behavior of ( cos cp) as a function of 6 is 
shown qualitatively in Fig. 2 (61 = 2£/~, 62 = .f6£/0. 

5. ATTENUATION OF AVERAGE FIELDS 

The attenuation of the average fields is due to phase 
fluctuations. The characteristic time of this process 
is much shorter than the relaxation time of the sta­
tionary distribution function. Usually, for a generator 
with a resonator of the Fabry-Perot type, this suffices 
to regard the phase fluctuations as independent of the 
amplitude fluctuations. In a generator with a ring 
resonator, the situation is radically changed. In the 
frequency region 1 61 < .f6£/ ~ the distribution function 
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FIG. 2 

has several extremal points. Therefore the states (31) 
and (33) are quasistationary and the time of transition 
between them can be comparable with the phase relaxa­
tion time. It is impossible in this case to separate the 
phase and amplitude fluctuations. At large detunings 
lo I > -16e/ ~ the stationary state (31) is uniquely deter­
mined, depending on the sign of 1i, and the dispersion 
of the distribution function Fo( (}, f{J) is small. Thus, 
the first fluctuations can be regarded independently of 
the amplitude fluctuation only for frequencies 11i I 
> -16e/ ~. Since the phase difference is defined, the 
random quantity will be the sum of the phases 1/J of 
the opposing waves. 

Assuming that 11i I > -16e/ ~, we represent the 
angular distribution functions in (27) in the form 

F(9, q>, '!'.I) =Fo(8, q>)Ft($, 1). (44) 

Substituting this solution in (2 5 ), we get 

!!_DFt=-1-~raF,_,(n)(~+..2_)Ftsi n6]. (45) .., ot (n) oljll bljl 2 + 62 ~ g 

Expanding F 1 ina Fourier series in I/J/2((am) 
~ ( eimi/J/2 ), we obtain 

Ft(lj),l) = .L; Ft,.(t)e1'"•12. Ft,.(l) ~ eivmt, (46) .. 
where Re "m gives the frequency shift corresponding 
to the pulling effect 

~w ( 6 . e . ) 
Re Vm = -m2Q 2 + 6.+-fstgn 6 . 

The imaginary part of "m determines the damping 

decrement of the average fields 
(A)~ 2+112 

lm\· =---m2• 
Ill 4Q~ 1 + ()2 

(47) 

In particular, 1m "m at m = 1 represents the width of 
the emission line in each of the directions, and in the 
limit of small detunings 1 » 11i I > -l6e/~ coincides 
with the corresponding expression obtained in[ 1' 31. 

In conclusion, the authors are grateful to G. I. 
Surdutovich for useful discussions. 
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