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A system consisting of a light quantum particle (electron) and a medium formed by heavy mutually im­
penetrable classical particles is considered. The electron interacts with the particles by means of 
weak short-range attraction forces. The appearance of an indirect, even very weak, particle interac­
tion via the electron leads to strong polarization of the medium at low temperatures; this polarization 
is manifest in the formation of a dense cluster of particles in a sufficiently large volume. The expres­
sion for the free energy of such a system has a singularity of the type of a first-order phase transition. 
The influence of the correction for direct interaction between the particles on the results obtained is 
evaluated. 

1. INTRODUCTION 

I T is well known that a medium becomes polarized 
when a particle falls into it. In the case of a plasma, 
such a polarization reduces to the appearance of the 
Debye screening radius. To the contrary, the local 
polarization of a dielectric medium by an electron can 
give rise to an effective potential well with a discrete 
spectrum, and the electron is in one of the quantum 
states realizing this spectrum (polaron). The displace­
ments of the elements of the medium are in this case 
relatively small, and the dimension of the polarized 
"cloud" is determined by the effective radius of the 
interaction of the particle with the medium. 

We consider in this paper a model in which the par­
ticle interacts with the medium with the aid of weak 
short- range forces, causing, however, a rather large 
polarization, which reduces to the formation of a clus­
ter- a dense accumulation of the elements of the med­
ium in a sufficiently large volume. As will be shown 
below, the dimensions of the cluster are determined by 
the distance over which the wave function of the ground 
state of the particle in the potential well produced by the 
cluster differs essentially from zero; the relative dis­
placement of the elements of the medium are in this 
case quite large. The resultant situation is then the 
opposite limiting case of the formation of the polaron, 
and is due to the quantum character of the problem. 

In the model under consideration, the medium is an 
aggregate of heavy classical particles. The light quan­
tum particle (for concreteness we shall conditionally 
use "electron") interacts with the particles of the med­
ium with the aid of short-range attraction forces. The 
operating radius of these forces is a, and the charac­
teristic value of their potential (i.e., the depth of the 
potential well) is v0 = fl2kg/2m. The effective forces of 
interaction between the electron and the medium will be 
assumed to be small, so that J 8 = (ako)8 « 1 (a-dimen­
sionality of the coordinate space of the problem). In 
order for a bound state of the electron to be produced 
in one heavy particle (i.e., in a region of dimensions of 

order aS) there must exist a discrete level of the order 
of Eo= fl2/2ma2 = v0 (J8 )-2/s, which greatly exceeds the 
depth of the well. In addition, as is well known, in the 
case of J8 « 1 a three-dimensional potential well does 
not contain any discrete levels at all, and in the two­
dimensional and one-dimensional cases it has a single 
discrete level luol << vo, located at the surface of the 
potential well. However, the level l~ol ~ Vo can exist as 
a collective level in the effective potential well produced 
by a cluster of particles in a sufficiently large volume. 
The formation of the cluster may turn out to be conven­
ient if the energy gain of an electron landing of the level 
8 0 exceeds the work necessary to produce the cluster 
on which this level is realized. 

Properly speaking, the potential of the interaction 
between the electron and the particle need not neces­
sarily correspond to just a narrow sign-constant poten­
tial well of low intensity. The entire theory developed 
below pertains to the case when the individual well does 
not contain a level, but the "effective" interaction is 
such that the level does appear for a sufficiently large 
particle accumulation (the potential can have an alter­
nating sign in this case). 

At a finite temperature T, the thermal motion of the 
particles counteracts the formation of the cluster, and 
the characteristic energy of this motion has an order 
of magnitude Nc T, where Nc is the number of particles 
in the cluster. It is assumed that there is no direct 
interaction between particles at distances larger than 
a, and at distances of the order of a the interaction is 
assumed to lead to non-penetrability. Therefore, in 
order for the cluster to be stable, it is necessary to 
have, in any case, 

l8ol ~ (1.)21'eo:;;:; NeT. 

If Nc >> 1, then the cluster can be regarded as a 
macroscopic formation. Thus, in the model considered 
here, the possibility of formation of a dense macro­
scopic accumulation of particles is the result of satis­
faction of the inequalities 

1 ';PI, ';P (Eo IT) -s/2. 
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If m is the electron mass and a is the characteristic 
interatomic distance, then Eo "" l05°K and there exists a 
sufficiently broad range of variation of the parameters 
T and J 8 , in which the foregoing inequalities are satis­
fied. 

The presented estimates show that under certain 
perfectly reasonable conditions the formation of a clus­
ter becomes convenient, and confirm the advisability of 
a more rigorous calculation. 

2. FORMULATION OF THE PROBLEM 

The particle configuration r is determined by speci­
fying the coordinates of the points rh r 2 , ••• rj, ... , at 
which the particles are located. The particle density is 

n(r)= ~ b(r-r'), 
r'er 

and the average dimensionless concentration c0 (the 
average number of particles in the volume aS) is deter­
mined by the formula 

a• S Co= lim V n(r)d•r. 
v ,-+oo • v, 

In the absence of an electron, the configuration r is a 
random quantity with a certain equilibrium distribution 
function Po(r)dr. 

If the particle mobility is small enough, so that the 
time of formation of the quantum states in a given con­
figuration r is much smaller than the characteristic 
time 1' connected with the displacement of the particle 
through a distanc:e of the order a, then for times small 
compared with 1' one can speak of a spectrum of the 
stationary states of the electron in the given configura­
tion, determined by the equation (b2j2m = 1) 

t\1Jl +(E- U)11J = 0, U = ~ v(r- r'), (2.1) 
r'er 

where v(r) is the potential of the interaction of the elec­
tron with the particle with a natural boundary condition1 > 

1/i lr-oo = 0. 
The presence of an electron leads to an appreciable 

realignment of the bare distribution p 0(r). Let Er de­
note the set of eigenvalues of Eq. (2.1) for a fixed con­
figuration r. Then, for a specified r, the electron can 
be in one of the quantum states realized on this con­
figuration, with Emergy E E Er, and the probability den­
sity of such an event is proportional to 

p(f,E)df = po(f)e-EITdf. (2.2) 

The latter expression is none other than the Gibbs 
distribution for the particles +electron system. Thus, 
most probable states of the particle system in the pres­
ence of an electron is determined from the condition of 
thermodynamic equilibrium. For each configuration, 
obviously, the most convenient is the existence of an 
electron in the ground state with energy Er = min E 
e: Er, with 

p{f) '""P(f,Er0) =po(f)exp(-Er0 /T). 

At low temperatures, the resultant distribution p(r) 

1>This boundary condition is satisfied only by states realizing a dis­
crete spectrum. 

can greatly differ from the bare distribution. In fact, a 
sufficiently low level IEr I "" vo can be realized by virtue 
of the condition Js « 1 only on a macroscopic density 
fluctuation of heavy particles. The probability of such a 
fluctuation is in itself quite small, but the presence of 
the factor exp(-Er/T) in (2.2) changes the situation sig­
nificantly. In essence, the problem reduces to a deter­
mination of the probability Po(E) = exp [- ii>(E)] of the 
occurrence of an optimal fluctuation that gives rise to 
the level E, after which the state of the entire system is 
def'.c~:ibed by the distribution function for the electron 
len·l. E 

p(E) = Po(E)e-EIT. 

In view of the macroscopic nature of the fluctuation 
level E, the quantity E = E(T), which is determined by 
the condition of the maximum of ln p(E), has a prac­
tically reliable value at each temperature T. The change 
of the free energy of the particle system, due to the 
introduction of the electron, is 

t\F=min(E-Tlnp0 (E)]. (2.3) 
Thus, the problem reduces to finding the probability 

p0(E) of the appearance of a fluctuation level E in a sys­
tem with a bare distribution function Po(r). A similar 
problem was investigated by one of the authors in[11 , 

and we shall state briefly the results that we shall need 
later on. 

In view of the low "intensity" of the potential well 
produced by the individual particle, the macroscopic 
fluctuations can be described with the aid of the average 
concentration c(x) (x = kor is the dimensionless coordin­
ate): 

a• r 
c(x) = -- 1 n(x)d'x, 

t\•x A~x 

where the volume A8x, over which the averaging is car­
ried out, is large compared with as, but much smaller 
than the value occupied by the cluster. The functions 
c(x), naturally, is normalized by the condition 

lim J- ~ c(x)d'x = c0 , 
Vu-co IX Vu 

where V sx is the volume in the a-dimensional x-space. 
The macroscopic concentration c(x) in r space corre­

sponds to a certain phase volume Ar{c}, and the bare 
probability density in the functional concentration space 

Po{c}= S Po(f)df 
Ar(c) 

is proportional to the quantity 

{ } ( .'Fo{c} - .'ro{co} )' 
P• c = exp - T , 

where .'F{c} is the free energy of the system of the par­
ticle as a functional of the concentration c(x) (we have in 
mind here and below the free energy and the tempera­
ture in units of k~, and instead of the electron energy E 
we introduce the quantity A = -E/k~). If there is no 
interaction between the particles (with the exception of 
the mutual nonpenetrability at small distances), then, 
taking into account the conservation of the number of 
particles, we have 
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tY"o{c}-tY"o{co} 1 s 
S{c}=- T =1. x(c,co)d•x, (2.4) 

where 
x(c, co)= o(c) - cr(co) - (c- co)o'(co), 

and the quantity a(c)/as is the entropy density of the 
system. The spectrum A{c} and the wave function of 
the electron in the medium with particle concentration 
c(x) are determined by the equation 

fix'!'- p.- c(x) )II>= 0, (2.5) 

and the lowest level corresponds to the eigenvalue 
Ao{c} =max X E A{c}. 

It was shown in the cited paperl1l that for each en­
ergy X there exists a unique fluctuation cA (x) (asymp­
totic in the parameter Js), such that 

$().)= -lnpo(A)=- max S{c}= -S{c,.(x)}. 
>. 0 (c}=A 

Therefore (see (2.3)) the non-equilibrium free energy 
of the particles + electrons system, corresponding to 
the concentration cA (x) and reckoned from the value 
corresponding to the average concentration c0 , is 

F(T,).) = -A.-t-co+TCfl(A.). (2.6) 

The quantity :\:' = X (T) minimizing the function F(T, X) 
at a given temperature T corresponds to the lowest 
level of the electron energy, which appears in the poten­
tial well produced by the optimal fluctuation at this tem­
perature cT(x) = cA(T)(x). The quantity F(T) = F(T, X(T)) 
corresponds to the state of the system in thermodynamic 
equilibrium, and will henceforth be called simply the 
free energy. 

As noted in the preceding section, the interaction 
between heavy particles reduces to their mutual non­
penetrability at distances on the order of a. One of the 
realizations of a system with such an interaction is the 
"lattice gas" of particles, corresponding to the entropy 
density2~ 

a(c) =-clnc-(1--c)In(l-c). (2.7) 

The entire analysis that follows pertains precisely to 
this case. Concrete expressions for the functions 
cf>(s)(.X) and the form of the extremal fluctuation c~(x), 
corresponding to the correlation (2.7), can be found 
inl1,2J. 

An investigation shows that in one-, two- , and three­
dimensional cases for an extremely small average con­
centration co« 1, lln col » 1, the free energy F(T) has 
a singularity corresponding to a first-order phase 
transition, and the character of the transition depends 
essentially on the dimensionality of the problem. At 
high concentrations co > 1/2 in a one-dimensional case 
there is no transition at all; in the three-dimensional 
case the transition always exists and its character does 
not depend on the concentration. A phase transition 
likewise always exists in two-dimensional systems, but 
at high concentrations it can be either of the first or of 
the second order. 

2>For simplicity we assume that the "lattice" constant coincides 
with the effective radius a of the force. 

3. INVESTIGATION OF FREE ENERGY F(T) 

As follows from (2.6), the values X = X(T) of interest 
to us can be determined by the roots of the equation 

1/T=<tl'(A.), (3.1) 

By the limits of the interval c0 =:;: A :::::: 1 (the characteris­
tic energy Vo is determined in order of magnitude, and 
without loss of generality it can be assumed that the 
true boundary of the spectrum E coincides with -vo), 
or by the singular points Xcr of fue function ci>(A) in the 
three-dimensional casel1J ). We note immediately that 
the boundary X = 1 of the interval corresponds to a 
maximum and not to a minimum of the free energy, 
since, according tol1,2J, we have for 1- X « 1 

where 

2 
Cl>C•l(A.) ~- (1- A.)-•12, 

sT, 

8=1, 

T,=A, llncol' A,= (nxt2)-t, s=2, 
1, I 2/n, 

(2n4)-1, s = 3 

(x1 is the first zero of the Bessel function J 0(x)). 

(3.2) 

(3.3) 

As to Eq. (3.1), in the case when ci>'(X) 2: <1>0 > 0 the 
roots of this equation appear only at a low enough tem­
perature T < T' = 1/<1>0 • On the other hand, if min ci>'(X) 
= 0, then Eq. (3.1) has roots at any temperature. We 
are therefore interested primarily in the inflection 
points (if they exist) of the function cf>(S)(.X), for it is 
precisely at these points that the local minima of cl>' (X), 
which determine the temperature behavior of the roots 
of Eq. (3.1), are reached. 

We now proceed to an investigation of the function 
F(T, A) in the limiting case of a small average concen­
tration Co « 1, lln Co I » 1. 

1. In the one-dimensional case the exact solutions lll 
lead to the formula 

<(1) 

1 S [ x(c) ]-'I• xx" ci><Il(A.)= -- A.-c+-- --de, 
ak0 x'(c) x' 

c. 

(3.4) 

where the maximum concentration c(X) is determined 
by the equation 

K(c) 
1.-c+--=0, x(c)""l<(c,c0 ), 

x' (c) 

ox 
x'(c)=a;;-· 

For the quantity c1>< 1>"(X) we obtain from (3.4) 
2 c(l) 'h ' 

e~><•>"(A.)= ... J (A.-c+~r ~[2xx"-(x')2Jdc.(3.5) 
Co fA- Co X X 

c. 

Near both boundaries of the spectrum A - c0 « c0 and 
1- A « 1 we always have cl>u1(A) > 0. However, for 
the values X' ""' lln col-1 such3 > that c(X') ""' 1, the main 
contribution to the integral (3.5) is made by the region 
c ""' co, and then 

2,4 

«<>< 1i"(A.')~ 1 .[2+S(2u+ ua )au]<o. 
Co fA1 - Co O,l 1 - U- e-u 

Thus, the second derivative of the function ci> 111(A) van­
ishes at least at two points A1 < X2 • An investigation 

3llt is curious to note that the concentrations corresponding to such 
values of X' are, as it were, intermediate [ 2 ] between small but long­
wave fluctuations of the particle density and states of the cluster type. 
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a b c 

FIG. I. Family of F(s)(T, A) curves. A dashed line denotes the geo­
metric locus of the extrema of the function F(s)(T, A), corresponding 
to the roots A/s)(T) ofEq. (3.1): a~ one-dimensional case, b ~three­
dimensional case, c ~ two-dimensional case. 

( I)n ) shows that when X « .>c 1 or .>c » .>c2 we have iP (.>c 
> 0, so that the assumed presence of precisely two 
points of inflection of q,<ll(.>c) is apparently justified. 

An analysis of the behavior of the function F<ll(T, .>c) 
leads to the following results (see Figs. 1a and 2a): At 
high temperatures (T > T~) the minimum of the free 
energy F< 1>(T, .>c) corresponds to the single root .>c<i>(T) 
of Eqs. (3.1), and when T » T61> = (3/8)c 0ak0 we obtain, 
with accuracy ~0 terms of order (T 61> /T)2 inclusive 

/,~1> ( T)- Co ~: ( T~'J ) 2 , 
" '"' F<O(T, 1.~0 (T)) = 0. 

Cu T 

The equilibrium :state defined by the value~ = .>c?>(T) 
corresponds to small fluctuations of the particle den­
sity, smeared out at large distances. Starting with a 
certain temperature T~, Eq. (3.1) acquires two more 
roots .>cJ 1>(T) and .>c?>(T), such that .>c~ 1 >(T) < .>cJ 1 >(T) 
< .>ci 1>(T). The m~w local minimum of the quantity 
Fu>(T, .>c) corresponds to the larger root .>cF>(T). At 
temperatures smaller than the transition temperature 
T<l> 

cr 
F<1>(T(tl '(IJ (T(IJ)) = F!l)(TI!l I (I) (T(O)) 

cr , 11.1 cr cr · ·3 cr ' 

the more convenient state is defined by the value 
"X = .>c F>(T) and corresponds to the formation of the 
cluster (of maximum density41)of length 2R 1 (T). Thus, 

(1) -- ' 3 ' { F<1>(T l.w(T)) 
F (T)~- F<'l(T,I.?1(T)), 

r > r~:1 , 
T < T~~>. 

Up to the temperature T~, defined by the equation 

A!'l (T1") = ).~11 (T,") =At. 

the long-wave fluctuations can be realized as a meta­
stable state. At lower temperatures, the quantity 
F U>(T, .>c), regarded as a function of .>c, has a single 
minimum at the point~ = .>c f1 >(T). 

In the limit when T « T 1 we obtain 

( T '-'• ( T )-'t. 
). = ;~.i''(T) ~ 1- T,) ' R,(T) ~ T, ' (3.6) 

F(ll(T) ~ -1 + c0 + 3( ;)'', c~n (T) ~- S<'>(T) ~ 2( ~ ri~.7) 

2. In the three-dimensional casel11 the behavior of 

•Jwe have in mind a particle accumulation with the maximum den­
sity as permitted by the correlation (2. 7), and not the close packing of 
hard spheres of diameter a. 

A ! 

I 
I !;: 1 '. 1 

i '--W--~ co~::;h: 
0 T"TiiJT' 

I cr f 

FIG. 2. Temperature dependence of the values of }:'(s)(t) corre­
sponding to the minimum of the free energy F(s)(T, X). The thick line 
corresponds to state and thermodynamic equilibrium, and the dashed 
line to metastable states: a ~ one-dimensional case, b ~ three-dimen­
sional case, c ~ two-dimensional case. The equilibrium level of the 
electron energy is E = ~ k 0 2 A(T). 

the function q,<3>(.>c) is described by the formula 

\ 

'I'• (A- Co) 'h n8 21 2 - , A < f.cr = Co +--Co ll Co, 
2 C0 (alr 0 )' !kp,2 

- 2 ( 1 __ )3 
--(1- >.)-'h 1- -arcsin 11- A , f.> /.c,(3.8) 
3Ta n 

where the numerical constant 'f4 is determined by 
formulas (2.26) and (A.10) ofl 1 • 

The low-energy part .>c < .>ccr of the expression for 
<I> <3 > (.>c) is obtained from the exact solution in the limiting 
case c ~ c0 << co. The branch corresponding to .>c > .>ccr 
is obtained in the approximation of rectangular fluctua­
tions5>, which is validl21 starting with .>c - .>c' » .>ccr· 
Nonetheless, although rectangular fluctuations leading 
to (3 .8) in the region .>c cr < .>c ~ .>c' are not the extremal 
ones, their contribution to the function S { c} is certainly 
larger than the contribution of the small fluctuations 
c- c 0 << c 0 lll. This means that small fluctuations, 
which are extremal for .>c < .>ccr' give way at .>ccr to 
dense macroscopic clusters, which are almost rectangu­
lar fluctuations starting with .>c - .>c'. Thus, formula 
(3.8) describes correctly the behavior of the function 
q,<3>(.>c), but it should be remembered that the expres­
sions (.>c -c 0) and q,<3>(.>c)l, <' ,, are determined cr Acr A5A 

only insofar as their order of magnitude is concerned. 
An investigation shows (see Figs. 1b and 2b) that 

Eqs. (3.1) has no roots at temperatures T > T~ ~ T3, 
and F<3>(T, .>ccr) > F 13 >(T, c 0), so that ther_EJ.odynamic 
equilibrium corresponds to the state with .>c = co, and 
consequently, to the concentration c(x) =Co describing 
an "ideal gas" of particles. Starting with the tempera­
ture T~, Eq. (3.1) acquires two roots .>ccr < .>cJ3>(T) 
< .>cP>(T) and .>cf3>(T~) - 1, which coincide at T = T~ and 
corresponds to a complete clustering of the particles in 
a region whose dimension is ~(T~) - 1, with the local 
minimum of the function F<3\T, .>c) determined by the 
larger root .>cf3>(T). At temperatures T < Tg~ - T3, the 
absolute minimum of the free energy is realized already 
not on the boundary of the interval .>c = co, but at 
~ = .>cf3>(T). However, the potential barrier ~(T) 
= max F 13 > (T, .>c), .>c < "X, which is determined in the 
region T~ » T » TJ3> = 47Td 12T3 by the smaller root 
.AJ3>(T) of Eq. (3.1), is too large: 

~ ~ _!__ ~ lin col ~ 1 
T Ts (ak 0 ) 3 ~ • 

For T = T63> we have .>cJ3>(Tci3>) = .>ccr' so that at lower 
temperatures 

s) Fluctuations are called rectangular if 
c,,jxj < R. 

c(x) ~ 
<o, I xi >Fl. 
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r!;l > T > Ta" = '/,n4cpc2T.co2ln2 Co 

Eq. (3.1) has a single root Al31(T) ="X, with 1- Al31 (T) 
« 1. The barrier ~(T) in this temperature interval 
coincides with F<31(T, Acr>• and its ratio to the tempera­
ture is of the order of magnitude of the ratio given 
above. Finally, at the temperature T:, there appears 
again a second root A~(T), which falls in the interval 
co< A< Acr and corresponds to the local maximum of 
the free energy. For T < T:, the barrier is ~(T)~ 
= F<31(T, AJ31(T)) ~ T2/c~(ak0)6 , so that when T ~ T 
..... c~(ak0) 6 we have ~(T) ~ T. We note that the charac­
teristic temperatures are connected by a chain of 
strengthened inequalities 

Ta ~ T!' ~,T': >T~11 >Ts">T. 

In accordance with the foregoing, there is realized at 
high temperatures T > T:t~ an "ideal" gas of particles 
c(x) = c0, and F<31 (T) = 0. At a temperature Tg~ ~ T3 
first-order phase transition occurs, and when T < Tg~ 
the state and thermodynamic equilibrium corresponds 
to formation of a cluster of spherical form with radius 
Ra(T) (Ra(Tg~) "' 1j, and the electron is in the ground 
state with energy A = A~31 (T) and F<31(T) 
= F<31(T, Al31(T)). 

In the limiting case T « T3 we obtain 

( T)'fs (T\-''• A= 1-f., (T) ~ 1- T3 , Ra(T) ~ l'a) , (3.9) 

<3l 2 ( T )-''• 
c ~ -s<•>(T) ~ 3 r. (3.10) 

We note that in the three-dimensional case, unlike 
the one-dimensional case, the high-temperature phase 
corresponds to an ideal gas of particles and can exist 
as a metastable state at arbitraril(a low temperatures. 

3. In the two-dimensional case 2J the function 
41<21(A), obtained in the rectangular-fluctuation approxi­
mation[ll, is given by 

(2) 1( t(l.)cpz2[t(A.)] 
tl> (A.}= - (ako) 2 (A.- Co}[i- t(A.)] x(c, Co), (3.11) 

where c = c0 +(A - co)/t(A), the t(A) dependence is ob­
tained from the condition a41 121/at = 0, and the trans­
cendental function cp2(t) is determined by the equation 

~(p)-= (-t-)''• Kt [(-t-)'''cpz]{xo ((-t-)''• q>z] 
] 0 (cp) 1-t i-t 1-t 

(Ji and Kj_ are Bessel functions of the first and third 
kind, respectively). 

In order for a phase transition to exist in two­
dimensional systems, it is necessary and sufficient to 
have at least one inflection point of the function 41<21 (A). 
We note that the absence of an inflection would be evi­
dence of a second order transition. It follows from (3.2) 
that 41<21 "(A) > 0 for 1- A« 1. On the other hand, 
from (3.11) in the limit A- Co« c0 we obtain 

(A-c0 )
2x2(c,c0 ) l}JC•l"(A.)= _(c-eo)' ( 2 - A.-co.:!!.._) <O 

l}l(2l(A.) 12c0 3 t(A.) dA. ' 

since[2J at A- co« Co we have dt/dA < 0. By the same 
token, we have proved the existence of a first-order 
transition. 

To be sure, the result is not quite correct, owing to 
the fact that (3.11) has been used in a region of the spec­
trum in which the applicability of the rectangular-flue-

tuation approximation has not been proved. However, it 
is quite difficult to obtain and to analyze the exact solu­
tion of the problem in this region of the spectrum, and 
the fact that the two-dimensional density of states, ob­
tained in the region A - co << c0 using this approxima­
tion[2J differs from the true one[1J only by a numerical 
factor, gives grounds for hoping the conclusion that a 
first-order transition exists to be correct. 

The family of curves F<21 (T, A) for the two-dimen­
sional case is shown in Fig. 1c. Equation (3.1) does not 
have real roots at temperatures T > T~ (see Fig. 2c), 
so that an "ideal gas" of particles is realized and 
F 121 (T) = F<21(T, co). In the interval T; < T < T~, Eq. 
(3 .1) has two roots A ~2 > (T) < A 12 > (T), with the local 
minimum of the free energy corresponding to the larger 
root Al21 (T). At a certain temperature Tcr > T;, deter­
mined by the condition 

}'(Z)(T<:1, AF (~)) = }'(Z)(T:l, Co), 

the state "X = AJ21 (T), corresponding to cluster forma­
tion, becomes more convenient, and the "gas" phase 
can exist as a metastable state. However, at a tempera­
ture T~' ~ T2c 0 lln col the barrier separating the states of 
the type of "ideal gas" from the cluster states vanishes, 
since A~21 (T;) = c0 • This circumstance is connected with 
the behavior of the function 41 121 (A) in the region A- c0 

<<co: 
fll<2l(A) ~ 1.- co 

At low temperatures T << T 2 we obtain 

X='-f21 (T)~t-( ~)"'. Rz(T)~(;.r'·, (3 .12) 

}'(21 ( T) ::::: - 1 + Co + 2 ( .!__)'" , c!;l ~ - Sl2l ( T) ~ (~ )-'/•. 
Tz T2 (3.13) 

Thus, in the two-dimensional case, just as in the 
three-dimensional case, the high-temperature phase 
corresponds to an ideal gas of particles, but the region 
of metastability of this phase, in analogy with the one­
dimensional case, is bounded from below by the tem­
perature T~. 

We note; finally, that the low temperature (T « Ts) 
results of this section can be obtained from (3.2) and 
written in a unified form 

<•> ( T )•I<•+•> ( T )-tt<•+2J X,= '-1 (T) ~ 1- T; , R,(T) ~ T, , (3.14) 

8 + 2 ( T ) 21(•+2) ( ) 2 ( T )-o/(s+2) FV>(T) ~ - 1 +c.+-- - , c.' ~ -s<•>(T) ~- -
s ~ s. ~ 

(3.15) 
3. In items 1-3 of this section we consider the be­

havior of a system in which the particle concentration 
is limitingly small: Co« 1, lln col » 1. In the case of 
high concentrations (up to co"' 1), the performance of a 
sufficiently detailed investigation is difficult. One can 
state, however, a number of statements concerning the 
existence on the character of the transition in different 
cases. 

As already mentioned, the existence of a first-order 
transition is connected with the presence of an inflection 
point of the function 41(s)(A) (more accurately, with the 
existence of a local minimum of the derivative 41(s)' (A) 
within the interval (c0 , 1)). In the one-dimensional case, 
when co > 1/2, the integrand in (3.5) is negative, and 
41 111" (A) > 0 in the entire interval c0 < A < 1, so that at 
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high concentrations there is no transition. In the three­
dimensional case, the expression (3.8) for ~<31 (~) re­
mains valid at arbitrary concentration only near the 
boundaries of the spectrum, ~ - co « co and 1 - ~ << 1. 
However, it is seen from this expression that the second 
derivative ~ <3 1 n ( ~) has different signs than the ends of 
the interval (co, 1), leading to a first-order transition 
with a critical temperature T63~ ~ (ak0) 3 • 

In two-dimensional systems near the renormalized 
boundary~- Co« Co we have ~<21 (~) ~ (~-co)· In this 
case, in the presence of an inflection point of ~<21 (~), a 
first-order transition is realized, and the absence of an 
inflection leads to a second-order transition, the tran­
sition temperature being T2 r ~ (ako)2 in both cases. In 
a second-order transition, lhe high-temperature phase 
corresponding to an "ideal gas" of particles gives way 
continuously to small long-wave fluctuations of the par­
ticle density. With further decrease of the temperature, 
the magnitude and the characteristic radius of the fluc­
tuations increases, and at T « Tg~ the state of thermo­
dynamic equilibrium corresponds to cluster formation. 

In the case of a first-order transition, all the state­
ments concerning the character of the transition in two­
and three-dimensional systems at low concentrations 
are fully applicable to the case of high concentrations. 

4. DISCUSSION 

It must be noted first that the term "phase transi­
tion'' used in the preceding section must not be taken 
literally. The existence of a phase transition is usually 
a limiting property of a physical system, appearing in 
the case when N - oo. In the proposed model one could 
speak of a phase transition only after going to the limit 
Js - 0, but in this case the concept of the transition 
becomes meaningless, since Ts ""Js, and at very low 
temperatures it is necessary to take into account the 
direct interaction between the particles. Therefore the 
term "phase transition" denotes only that the transition 
from the "gas" distribution of the particles to the dense 
cluster occurs in a narrow temperature interval t..T/T 
~ Js· 

The existence of a transition in the proposed model 
for the one-dimensional case, proved in Sec. 3, does not 
contradict in any way the general statement that phase 
transitions in one-dimensional systems are impossible. 
In fact, the usual arguments pertain to the case when the 
convenience of separation into phases is determined by 
the behavior of the entropy and surface terms in the 
free energy. In the problem under consideration, there 
is no separation into phases, and there is no concept of 
surface energy. The occurrence of dense formations­
clusters-is connected with the occurrence of an effec­
tive long-range interaction of the heavy particles via 
the electron. One can regard the cluster as one phase, 
and the region surrounding it as another phase, and one 
can speak of their simultaneous existence with a distinct 
interface, but such a subdivision of the system is obvi­
ously formal, since the thermodynamic properties have 
no meaning for each of these phases when taken separ­
ately. 

It is seen from the results of Sec. 3 that as T- 0 we 
have for the entropy of the system S(T)- -oo, contra­
dicting the Nernst theorem. However, the limiting tran-

sition T- 0 in the expressions (3.14) and (3.15) is 
meaningless, for at very low temperatures it is neces­
sary to take into account the direct interaction between 
the particles. If we introduce the interaction energy 01 

(in units of k~) per particle in the cluster, then the addi­
tion to the free energy (3.15) takes the form 

a ( T) -•I!H2) 
aN.=-- -

J, T, 

This addition is small compared with IF(s)(T) I "" 1 if 
01/Js « (T/Ts)s/(s +2) « 1. Thus, in the case 01 «·Js, 
neglect of the direct interaction between the particles 
is justified up to temperatures T/Ts ""01/Js « 1, which 
are much lower than the transition temperature. 

The states considered in the preceding section are 
in thermodynamic equilibrium, but the transition, say, 
from a gas distribution to a cluster is hindered in the 
three-dimensional case by the presence of an energy 
barrier t..(T), although to be sure this barrier decreases 
with temperature. The characteristic temperatures are 
quite low, but differ greatly for different dimensionali­
ties of space: TJT3 "" (akor2 » 1. Therefore the real­
ization of the described transitions can occur if at low 
temperatures T « T s the particles are still mobile, 
and the direct interaction between them can be neglec­
ted. One of the possible realizations of the considered 
model may be a system of disordered impurities of low 
intensitl1l , which play the role of heavy classical par­
ticles forming the medium in the given model. 

Inasmuch as at low enough temperatures the ther­
modynamic barrier preventing the formation of clusters 
is absent in the one- and two-dimensional cases, we can 
expect clusters to occur on flat defects, on free sur­
faces, or on linear defects (dislocations). 

It should be noted that we undertook a choice of the 
concrete model in order to investigate in detail the be­
havior of the system. At the same time, the main phys­
ical properties can be obtained and formulated in general 
thermodynamic terms at an arbitrary interaction be­
tween the particles of the medium. 

In conclusion, let us discuss in greater detail the 
possible generalizations and realizations of the model 
under consideration. First, it is interesting to investi­
gate the behavior of the system in the case of large 
numbers of "electrons." It is clear beforehand that at 
low temperatures there can be realized one of three 
possibilities: all the electrons are localized on one 
cluster forming a unified condensed system, or else 
each electron produces an individual cluster, or else 
there is a certain distribution of the electrons among 
different clusters. To determine which of the indicated 
possibilities is realized, it is necessary to investigate 
the energies of the clusters and the entropy term in the 
free energy of the system. At low electron concentra­
tion ce, however, regardless of the magnitude of the 
energy interaction, the entropy term T ln c0 predomin­
ates, and leads, as always, to a quasi-ideal gas of iden­
tical clusters, containing one electron each and des­
cribed by the formulas given above. When the concen­
tration is increased, energy terms begin to play a role. 
Bearing in mind the simpler case, we can exclude from 
consideration the direct interaction between the "elec­
trons," which frequently is screened in real systems. 
However, owing to the Pauli principle, the character of 
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the thermodynamic equilibrium state is determined in 
many respects by the energy spectrum of the electron 
in the cluster, and an analysis of the behavior of the 
system in this case calls for an additional investigation, 
which is not within the scope of the present work. 

Very interesting results can be obtained also by tak­
ing into account the interaction of the heavy particles 
with one another. Let, in particular, this interaction be 
such that condensation takes place at some temperatures 
in the gas of the heavy particles. An electron, weakly 
attracting the particles, becomes in such a system, as 
it were, a quantum center of condensation. Therefore 
the presence of electrons in the system changes strongly 
its thermodynamics, leading to the appearance of stable 

heterophase fluctuations and increasing, in particular, 
the transition temperature. A detailed investigation of 
this question will be the subject of a separate communi­
cation. 
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