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It is shown that nonlinear transfer of sufficiently narrow wave packets to the long-wave spectral reg
ion as a result of scattering by particles does not occur via diffusion "creeping" but via a satellite 
system. For Langmuir oscillations, the process may represent either a discontinuous variation of 
wavelength or nonlinear reflection involving a change of the wave vector direction. Conditions are 
found under which evolution of broad wave packets leads ultimately to the same type of two-level 
transfer. 

WE consider in this paper the evolution of the spec
trum of oscillations of a plasma as a result of induced 
scattering by particles. In a collisionless plasma, in 
the spectral region where the Landau damping is small, 
the evolution of the spectrum is determined by nonlinear 
effects, principal among which are (with respect to the 
parameter W/nT, where W is the wave energy density) 
decay processes and scattering of waves by plasma par
ticles. We shall henceforth consider only the case when 
the decay processes are forbidden by conservation laws, 
or have a much lower probability than nonlinear scatter
ing. Examples of "non-decay spectra" can be ion
acoustic waves, and in an isothermal plasma also 
Langmuir waves and electromagnetic waves at low 
frequencies (w < 2 w0e)· 

1. PRINCIPAL LAWS OF THE PROCESS 

To establish the principal laws of the spectral re
distribution due to nonlinear scattering, we turn to the 
following simple model. 

Assume that there exists in the plasma a narrow one
dimensional wave packet (the criterion for the packet 
width will be given below). As a characteristic of the 
spectrum, we choose the "number of waves" Nk 
= Wk/wk, where Wk is the spectral density of the os
cillation energy. Using the second-quantization formu
las and going over to the limit of large quantum-state 
occupation numbers, we can obtain a kinetic equation for 
the waves, describing the evolution of the spectrum due 
to nonlinear scatteringr1J : 

{)Nk/{)t=ykNk, Yk= Ewkk'Nk,, (1) 
k' 

where w~' is the transition probability. Inasmuch as the 
number of waves in each act of scattering is conserved, 
we can write 

L {)~k = ,Ewkk'Nh,Nk = 0, 
ft k', k 

whence wr = -w~/' and in particular w~ = o. 
Further, inasmuch as the particles can only become 

heated during the scattering process, and consequently 
acquire energy from the waves' we obtain wr > 0 when 
k' > k. Finally, the probability o1tthe transition into a 
state with zero wave number is w 0 = 0. 
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We can now reconstruct approximately the form of 
the entire nonlinear increment Yk as a function of the 
wave number (Fig. 1). The increment Yk vanishes at 
k = 0, and k = ko at the "center of gravity" of the 
packet. Obviously, when 0 < k < ko the function Yk has 
at least one maximum. Let the principal maximum be 
located at the point k1, and assume that in the entire 
interval 0 < k < k0 there is a certain initial background 
of oscillations ~· If the initial width of the spectrum 00 

is small compared with ko- k1, then at the point k1 the 
oscillations that will build up predominantly will be 
those due to the nonlinear redistribution of the initial 
spectrum Nk. Until an appreciable fraction of the noise 
of the initial spectrum is transferred to the region 
k ~ k~o the number of waves at the point k1 will increase 
exponentially: 

(2) 

If, as is usually the case in an equilibrium plasma, nk 
is a power-law function of k, then the n(k) dependence 
turns out to be negligible compared with the y (k) depen
dence, which enters in the argument of the exponential 
in (2). Thus, within the time 

(3) 

the number of waves in the region k ~ k1 increases in 
order of magnitude to the number of waves in the initial 
spectrum. The position of the maximum y (k) remains 
unchanged so long as N(k1) « N(ko). The width of the 
new line at k = k1 can be obtained from the relation 

N(kt±6k) ~ex [-(i:Jk) 2 {)2y -r] 
N(k1) P ak• 

and turns out to equal 

(4) 

The new spectrum also is a narrow line if A >> 1. 
As soon as the number of waves in the new line 

FIG. I 
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reaches an order of N(k0}, the position of the zero and 
of the maximum of y (k) begins to shift towards smaller 
k. Here, however, the new line is located all the time 
in the region y > 0, and the time required for all the 
waves of the initial spectrum to become transferred to 
it is of the order of y-1(k1}. Simultaneously, in order for 
the number of waves at some other point of phase space 
to increase to a value of the order of N(k0}, the required 
time is T ~ Ay-1(k1). Thus, practically the entire initial 
spectrum becomes transferred to a new narrow line (k) 
~ kh and the entire process is repeated. It should be 
noted that at each instant of time there can exist no 
more than two lines with an energy density greatly ex
ceeding the energy density of the background, this also 
being connected with the large value of the time T. 

Let us find the time variation of the transformation 
of the spectra, assuming that the transfer is only be
tween two narrow lines. The total increment, accurate 
to terms ~o 0/ko is written in the form 

(5) 

(We have taken it into account that the total number of 
waves No remains constant during the transfer process.) 
Substituting (5) in (1}, we obtain the following equation 
describing the evolution of the spectrum: 

~ln N(kt) =yo(1- N(kt)} 
ot N0 No ' 

(6} 

vo == Nowk,k'=v(ki) lt=O· 

Solving (6} under the condition N(k1)lt=O = n(k1), wear
rive at the following result: 

N(kt. t) ~No j [ 1 + N~ exp(-y0t)], 
N(ko,t) =No-N(k~,t). 

(7) 

The total transfer time To is determined from the con
dition N(ko, To) = n, from which we get 

2 N0 2A 
't'o~-ln-=-. (8) 

Yo n Yo 

The "two-level" transfer process considered above 
may experience competition on the part of the process 
of "diffusion" transfer of the wave from the center of 
the line to the "left wing" (Fig. 1). In a time on the 
order of y-1(ko- Oo), the spectrum shifts by an amount 
equal to the line width 60 into the region of smaller wave 
numbers. Accordingly, the shift of the spectrum within 
the time To can be estimated at o0T0 y(k0 - 60}. In order 
for two-level transfer to predominate, we must have 

lloToy(ko- llo) ~ ko- k1. 

When ko - k1 ~ ko we get from this a limitation on the 
width of the packet: 

llo y(ko -llo) 1 
- ~--. 
ko yo ·A 

(9) 

2. TWO- LEVEL TRANSFER OF A NARROW PACKET 
OF PLASMA WAVES 

Let us illustrate the effect considered above using as 
an example the evolution of a narrow spectrum of 
Langmuir waves (N (k) ~ No o (k - k0}) as a result of 
nonlinear scattering of waves by ions and electrons of a 

plasma, which at Te = Ti are described by the following 
kinetic equationslzJ: 

It is seen from (10) and (11} that the maximum fre
quency of scattering of the oscillations by the ions is 
w0eNoW/nTe, and that for scattering by electrons is 
woe(NoW/nTe}(kDe)2 • Since two-level transfer has the 
maximum increment, it will be realized for plasma 
waves as the result of scattering by ions. Solving the 
equation ay/ak = 0, we obtain the position of the new 
line k1 in wave-vector space: 

2~!/'- kt2~i koD,<T -M, k 1k 0 =0, -=--:- ----1; 
ko il M k0 D, 

2~ /'- kl 2~ l. k0D,>a 1{' k1ko=n, r=1---,-- -----, 
, o 3 M k0D.(12) 

i.e., for sufficiently short Langmuir waves, the two
level transfer leads to a linear reflection effect. The 
effective range of plasma waves 

1 iJ,oo nT. 
L ~--A~ kD.--D.A 

y ok Now 
(13) 

decreases upon each succeeding reflection. This leads 
to "entanglement" of the packet of waves, which con
tinues so long as the condition kDe > (2/3) m/M is 
satisfied. 

3. GATHERING OF BROAD SPECTRA INTO NARROW 
ONES 

Let us return to the one-dimensional model and let 
us consider a spectrum of final width, bounded by cer
tain values of wave numbers k1 and k2 (Fig. 2). Outside 
the region kt < k < k2 , the noise density vanishes more 
rapidly than exponentially. Then, as can be readily 
seen, the nonlinear increment describing the scattering 
of the waves by the particles vanishes at a certain point 
ko and is positive when k < k0 • Thus, as a result of 
scattering of waves by particles, the "center of grav
ity" of the packet will shift towards the point k1 (Fig. 2}, 
but owing to the rapid decrease of the number of waves 
on the boundary, the point k 1 itself will shift towards 
longer wavelengths much more slowly. As a result, the 
initially broad spectrum contracts into a narrow line 
near k = kt· The time of transfer is of the order of 

1 kz- kt 
't'eff ~-In--, (14) 

Yo ll 

where o is the final line width 

"' Yo""" y(k,) lt=0= J w:,'N(k') l1=0dk'. 
k, 

As the spectrum contracts, the maximum of the incre
ment shifts gradually to the left, and is located outside 
the packet after a certain time. Then, at T eff :;:: To, 
where To is given by (8}, a new line can form, i.e., the 
already considered time of two-level transfer begins. 
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FIG. 2 

All the effects of nonlinear transfer considered 
above, hike place, strictly speaking, only in the case 
when we can neglect the processes of higher orders, 
which broaden the spectrum, for example four-plasmon 
interaction. 

Let us consider, by way of an example, a one
dimensional packet of Langmuir waves with kDe 
< ../m/M. The process that contracts the spectrum is 
the scattering of waves by ions, and its frequency can 
be determined from (10): 

1/M Nro 
VPi ~ roo.y -kD.-T . 

m n • 

The competing process, which broadens the packet, is 

plasmon-plasmon scattering, the maximum frequency 
of which in the indicated spectral region does not ex
ceedrsJ 

VPP· ~ roo.(lli ro I nT.) 2• 

We can see that at sufficiently high wave energy density 

Nro InT.> kD.-yM I m 

the four-plasmon interaction is capable of effectively 
hindering the gathering of the spectrum. 
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