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The nonlinear polarizability of an active gas medium is calculated by taking into account capture of 
resonant radiation. Radiation capture results in efficient mixing of the velocity distribution for atoms 
at the upper working level and also in leveling out of the population in the Zeeman sublevels of the 
atoms. It is shown that, along with formation of Bennett holes, generation leads to a general lowering 
of the amplification contour and the saturation effect acquires some properties which are character­
istic of homogeneous broadening. It is shown that radiation capture alters the dependence of the 
generation intensity on resonator tuning (shape of Lamb dip). It is shown that the parameters char­
acterizing the dip depend on the total moments of the operating levels and on polarization of the laser 
radiation. 

INTRODUCTION 

E FFECTS of pressure in gas lasers have been in­
tensely investigated in recent times, both experimentally 
and theoretically (see the bibliographies inu-31 ). Usually 
the effects of pressure are ascribed to collisions of 
different types. The main interest is the influence of 
collisions on the form of the Lamb dip. 

As to the dragging of resonant radiation, until re­
cently it has not been investigated at all11. Yet, if one 
of the working levels is connected with the ground state 
by an allowed optical transition, then the dragging at this 
transition is usually practically complete even at pres­
sures when the collisions are not yet significant. There­
fore, when considering collisions of atoms in a gas laser 
it is always necessary to take into account the fact that 
they occur against the background of almost complete 
dragging of the radiation. In the opposite case, the colli­
sion cross sections determined from the dependence of 
the shape of the hole on the pressure may turn out to be 
in error. 

The role of dragging can be understood on the basis 
of the following qualitative considerations. We assume 
that the upper working level is coupled with the ground 
state. In the generation regime, the monochromatic 
field of the laser decreases the population of this level 
for those atoms for which the Doppler frequency shift 
coincides with the detuning of the resonator relative to 
the frequency of the working transition within the limits 
of the natural line width (the Bennet holes). The dragging 
of the resonant radiation leads to an effective mixing of 
the distribution with respect to the velocities for the 
atoms at the upper working level, and also equalizes the 
populations on the Zeeman sublevels of these atoms. As 

1lThe significant consequences ensuing from dragging of resonant 
radiation in a laser were first discussed at the All-Union Symposium on 
Gas Laser Physics (Novosibirsk, July 1969) in papers by I. M. Beterov, 
Yu. A. Matyugin, S. G. Rautian, and V. P. Chebotaev, where convinc­
ing experimental data were also cited, and also in a paper by the present 
authors, where the present work was reported. The main conclusions of 
all these papers are in agreement. 
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a result, the decrease of the population in the region of 
the Bennet holes brings about a decrease of the popula­
tions of the upper working level for atoms with all 
velocities (see the figure). Therefore, besides the 
formation of Bennet holes, generation causes a general 
lowering of the amplification contour. Thus, owing to 
the dragging, the effective saturation acquires singulari­
ties that are characteristic of homogeneous broadening. 

It is easy to estimate the additional decrease of the 
number of atoms at the upper working level, as there­
sult of dragging, i.e., the areaS shown shaded in the 
figure. 

We denote the total natural width of the upper level 
by Y1; Y1 = y~ + Y1, where Y1 is that part of the natural 
width which is connected with the transition to the 
ground state. Usually this transition makes the main 
contribution to y 1, so that the quantity y ~. which is con­
nected with all the remaining transitions, is small: 
y ~ << y 1• If Sa is the area of the Bennet holes, then we 
can write the following balance equation: y~ = 'Y1SB. 
Indeed, owing to the dragging of the resonant radiation, 
the total number of atoms at the upper working level re­
laxes with a small decay constant y ~, whereas the 
velocity mixing is determined by the large quantity y 1. 
Consequently, S >>Sa, but not all the excited atoms are 

Distribution with respect to the velocities Vz of the atoms at the 
upper working level. Dashed line ~ in the absence of generation, solid 
line ~ in the presence of generation. Owing to the dragging of the reso­
nant radiation, a mixing of the atoms by velocities takes place, and leads 
to a general lowering of the distribution function. 



586 M. I. D'YAKONOV and V. I. PEREL' 

important for generation, and only those whose velocities 
lie in the region of the hole. The additional decrease of 
the number of excited atoms in the region of the hole, 
due to the dragging, constitutes a small fraction of the 
value of S, on the order of y 10 /ku, where y 10 is the 
natural line width for the working transition, and ku is 
the Doppler width of this line. Thus, the role of the 
dragging of the radiation is characterized by the param­
eter Y1Y10/y~ku. 

The ratio y 10 /ku is small, and therefore the influence 
of the dragging on the generation is appreciable, provi­
ded only the transition to the ground state makes the 
overwhelming contribution to the natural width y 1, i.e., 
if y~ «: y 1· This is a fairly common situation, and we 
shall henceforth assume it to obtain. 

The role of dragging increases with increasing pres­
sure, since the collisions cause the width of the Bennet 
hole to increase. The dragging of the radiation changes 
the dependence of the intensity of the generation on the 
tuning of the resonatov (the shape of the Lamb dip). As 
a result of the overall settling of the amplification con­
tour (which is proportional to the generation intensity), 
the Lamb dip becomes less pronounced. 

In this paper we calculate the nonlinear polarizability 
of the active gas medium with allowance for dragging of 
the resonant radiation, and obtain an expression for the 
shape of the Lamb dip under these conditions. We show 
that the parameters characterizing the hole depend on 
the momenta hand j0 of the working levels and on the 
polarization of the laser radiation. These parameters 
are calculated for different cases. 

ALLOWANCE FOR DRAGGING OF RADIATION IN THE 
EQUATIONS FOR THE DENSITY MATRIX 

We shall assume that the pressure is so low that the 
collisions are still insignificant. Then the equations for 
the density matrix of the atoms, with allowance for the 
dragging of the resonant radiation, takes the form 

dfmm' + ( vt' + iitl lmm' - iit (tn mm' 
dt 

=~ ..E[(Edm~)¢~m'- ¢m~(Ed11m')]+Yf'NtF(v)llmm', 
~ 

d'f""' i L (Ed ) l --+ Yo'Piw· =- [ (Ed"m) 1Jlm11'- "'""' "'"' 
dt tz m 

1nm' 
(1) 

Here d/dt =a/at+ v · v. The form of the equations and 
the notation is the same as in our earlier paper l4 J. The 
term -y1(Lf)mm'• added to the first equation of (1), 
takes into account the dragging of the resonant radiation, 

(Lf)mm'= S d3r' S d3v' L K;:::::;" (r- r', v, v')/m,m,,(r', v', t), (2) 

the kernel K:~~ was calculated by us inlsJ. 

In Eqs. (1) and (2), fmm' denotes the elements of the 
density matrix pertaining to the upper working level 
(level1), while rp/.l/.l' denotes the same for the lower 

working level (the zero level). The density matrix ele­
ments connecting the upper and lower states are denoted 
by 1/J IJ-m and 1/Jm/.l; wo is the frequency of the working 
transition, y 1 = y ~ + y 1 and Yo are the reciprocal life­
times of the upper and lower levels, Y10 = (1/2)(y1 +yo), 
y 1 is the part of the width of the upper working level due 
to the transition to the ground state. 

The term containing rmll}' describes the arrival of 
/.l/.l 

the atoms from the state 1 to the state 0 in spontaneous 
emission. Inl4 J, the matrix r is expressed in terms of 
the probability y of transitions from the level 1 to the 
level 0. The following relation holds: 

.E mm 2jt+1 
f~w =ll~11'-. -,-1 v. 

m 2Jo -r 

We note that if spontaneous transitions from the level 1 
are possible only to the level 0 and to the ground state, 
then y and y~ coincide. 

It is assumed that the pumping is homogeneous and 
isotropic, and the atoms at the levels 1 and 0 are pro­
duced with a Maxwellian velocity distribution. F(v) is 
the Maxwellian distribution normalized to unity; y~N1 
is the number of atoms produced per unit time at each of 
the Zeeman sublevels of the state 1 as a result of the 
pumping, y 0 N0 is the same for the state 0; E is the 
field in the laser; dm/.l are the matrix elements of the 
dipole moment. 

We now assume that y ~ << y 1 and that the dragging is 
complete, i.e., the mean free path of the photon of the 
resonant radiation at the center of the line 10 is much 
smaller than the radius of the tube: 

l0 = (2jg+ 1)8n'huj (2ii + 1)ngA3iit, (3) 

(here j 1 and jg are the total momenta of the level 1 and 
of the ground level, ng is the concentration of the atoms 
of the working medium in the ground state, u = (2T/M) 112 , 
T is the temperature in energy units, and A. is the wave­
length of the dragged radiation). For an He-Ne laser at 
a partial neon pressure of 0.1 Torr, for a resonant 
transition from the level 2s2 , we have lo = 10-2 em, so 
that the dragging is indeed almost complete. 

We shall assume the dragging to be so strong that 
the decay constant characterizing the change of the total 
number of excited atoms at the level 1 reduces to y ~. 

We shall seek stationary solutions of the system of 
equations (1) by the method of successive approxima­
tions. The field E will be written in the form 

E = (Eoei<»t +Eo • e-imt) sin kz. 

In the zeroth approximation in the field E, we have 

(4) 

y 2it + 1 
No=No+ Yo 2;o+ 1 N,, (5) 

We have used here the following property of the kernel 
K: 

S d3r' S d3v' L,K;;::::;•' (r- r', v, v') llm,m,'F(v')= &mm'F(v), (6) 
m1m1 

where F(v) is the Maxwellian distribution. 
In second order in the field E, we have an equation 

for the spatially- homogeneous part of the density matrix 
of the upper working level fg{m': 



EFFECT OF RESONANT-RADIATION CAPTURE 58'1 

where 
RmJn'= 

Here N = N 1- No and li = w - wo. The quantity Rmm', 
due to the induced transitions, is a sharp function of the 
projection of the velocity of the atom on the direction of 
the wave vector k. 

It is convenient to represent f:rim' as the sum of a 
sharp function and a smooth function of the velocity: 

.<21 I +t" Jmm' = Rmm' '\'1 mm'· 

For the smooth function f~m' we have the equation 
8 - 'Yt -. 

(y/ + 'Yt)/mm•- 'Yt(L/')mm'=;;-(LR)mm'· 

Equation (9) can be solved in the case y~ « 1'1 under 
consideration. We seek the solution in the form 

(8) 

(9) 

f~m•=AI>mm'F(v)+l'lmm', (10) 
where A is a certain constant and 11mm' is a small 
correction. Then, using the property (6) and neglecting 
the term r~17mm'• we obtain an equation for 11mm': 

'Yli'Jmm•-'Yt(brt)mm' = -y{l>mm'AF(v) + (LR)mm'· (11) 

The condition for the solvability of this equation deter­
mines the constant A. Indeed, 

J d'v .E (LI'J)mm= J d'v .E I'Jmm (12) 
1n m 

for any function 1Jmm', since under the conditions of 
total dragging the spontaneous transition to the ground 
state does not change the total number of excited atoms 
at the level 1. From (11) and (12) we obtain the quantity 
A: 

A= (2it! 1)y{ J d'v ~ Rmm(v). (13) 

Integrating in (13) with respect to the velocities (with 
allowance for the fact that y 10 « ku) and neglecting the 
correction 7Jmm', we obtain with the aid of (8) and (10) 
a final expression for the density matrix of the upper 
working level 1 in second order in the field: 

<21 NF(v) { 1 ~ , [ '\'to 
fmm' =-~ 'l't "-r (Eo dm~) (Eod~m·) '\'102 + (I)+ kv)f 

~ 

where (14) 

The first term in the curly brackets in (14) describes 
the formation of the Bennet holes. The second term is a 
reflection of the settling of the entire distribution of the 
atoms at the level 1 with respect to the velocities, due 
to the dragging of the resonant radiation. In the region 
of the holes, the ratio of the second term to the first is 
deter mined by the parameter y 1 y 10 /y ~ ku. 

The appearance in formula (14) of an addition, 
smoothly dependent on the velocity, to the density ma­
trix causes the change of the spontaneous emission from 
the upper working level, due to the laser field, to occur 

not only in the region of the hol:'s (narrow lines [sl), but 
also in the entire Doppler contour (broad line). 

This singularity appears also for transitions begin­
ning at the lower working level. The reason for the ap­
pearance of the broad line is in this case the spontane­
ous transition 1 - 0 (the term containing the matrix r 
in Eqs. (1)). We shall not present here expressions for 
the spontaneous emission from the working levels of the 
laser. We note only that the integral intensity of the 
broad line is larger than the intensity of the narrow lines 
in a ratio y 1 /y ~. The broad line is in the main not polar­
ized. This is connected with the fact that in each act of 
absorption of a resonant photon the polarization returns 
only partially, as a result of which the relaxation of the 
orientation and the alignment of the atoms occur not 
with a small decay constant y ~. but with a decay con­
stant on the order of the value of y 1 itself. The polar­
ized part of the broad line is due to the function 1J mm', 
which we have discarded. The integral intensity of the 
polariz·ed part of the broad line is of the same order as 
the intensity of the narrow lines. 

We note that formula (14) and the results that follow 
concerning the shape of the Lamb dip can be obtained by 
replacing the integral term (:U)mm' in Eqs. (1) by the 
expression 

(Lf)mm•-+ ~mm' F(v) J d3v'L,fm,m,(r,v',t). 
2]1+1 m, 

Neglect of 7Jmm' in (10) is in essence equivalent to such 
a replacement. 

It must be borne in mind, however, that this replace­
ment is valid only for that part of the density matrix 
fmm', which changes sufficiently slowly in space. A 
characteristic scale is the photon mean free path lo 
(formula (3)), which determines the spatial dispersion 
of the kernel Kin formula (2). In the equation for the 
spatially modulated part fmm' (which is significant in 
the higher approximations with respect to the field or 
with respect to the ratio y 10 /ku), the integral term must 
be discarded, since usually klo >> 1. 

SHAPE OF THE LAMB DIP 

We now proceed to determine the dependence of the 
generation intensity on the detuning li. Substituting (14) 
(and the corresponding expression for 'Pmm') in the 
third equation of (1), we can find lJIJJ.m in third order in 
the field, and calculate the dipole moment of the gas in 
the mode under consideration, using the formula 

2 I 

P = T J dz sin kz J d3v L, dmJL .P~m· 
0 mJL 

Here l is the resonator length. We then obtain 

Pr = (a- buiErl 2 - br, -riE-ri 2)Er. 

P-r = (a-Lr.riErl 2 -b-r,-riE-ri 2)E-t. 
(15) 

Here P± 1 and E:t 1 are the circular components respec­
tively of the dipole moment and of the field, and a is the 
linear polarizability: 

- 2". 
a=id•Ninw(~). W(z)=e-•'(1-:Jet'dt). (16) 

3h ku ku 'In 0 

The coefficients b, which characterize the nonlinear­
ity, were calculated by us in£41 without allowance for the 
dragging. When dragging is taken into account we have 



588 M. I. D'YAKONOV and V. I. PEREL' 

bqq' = b~q' + bs, where b~q' are quantities calculated 

in r4 J : 

bu0 = b~t.-t= igA,0 (__!_ + __!_) (1 + ~) 0, 
Y1 yo Yto + 16 

b,~ -1 = b~t. I= ig(A2° + Ao0) (_!__ + _!__) ( 1 + ~) E, (17) 
Yt Yo Y10 + 16 

g= Vnd'N(41i3kuy 10 )-l, 0 = exp{-62/ (ku)2}. 

The numbers A~, which depend only on the momenta j 1 
and jo, have been calculated inr4 J. For j1 = 1 and jo = 2 
we have A~= 23/450, A~= 1/900, and A~= 7/300. The 
addition bs resulting from the dragging is given by 

. 4-y;;: Y10 ""w( 6) b'-! (!) --g9(2it+1)y,'ku ku · (18) 

In formulas (17) and (18) we have neglected the influence 
of the spontaneous transition 1 - 0 (the term with r~~' 
in Eqs. (1)) in view of the smallness of the ratio y /y 1• 

With the aid of expressions (15) we can determine the 
intensity of the generation I = IEol 2 in the stationary 
regime (see, e.g., r4 J ). If the laser radiation is circu­
larly polarized, then 

I,= (a"- (4:rQ)-') I b11". (19) 

Here Q is the quality factor of the resonator, and a" and 
b~1 are the imaginary parts of the coefficients a and b11• 

· In the case of plane polarization, the intensity Ix is 
given by another formula: 

I,= (a"- (4nQ)-') I b.,.,, (20) 

where bxx = (1/4)(bu + b1,-1 + b-1,1 + b-1,-1l· 
The type of polarization can be determined both at 

the moments of the working levels r4 J and by the aniso­
tropy of the resonator. Using formulas (16)-(18), we 
can represent both expressions (19) and (20) in the form 
of Szoke and Javanr1J: 

[ N<OJ 1 ( YloV!o )-l I= canst· 1 -- 1 + 2 , 
N8 Y1o + 6' 

(21) 

where N< 0 l is the threshold value of Nat f5 = 0. For /'10 

we obtain the following expression: 

_ [ 4-y-;:i Yto ( 1 1 )-t1-t '\'to=Yto 1+-fl-,- -+- · 
3 Yt ku Yt Yo 

(22) 

We recall that y 1 and Yo are the reciprocal lifetimes of 
the upper and lower levels, y 1o is the natural line width, 
y~ is the probability of the spontaneous radiative tran­
sition from the level 1 to all the states except to the 
ground state. 

The numerical coefficient {3 in formula (22) depends 
on the momenta of the working levels j 1 and j o and is 
different for planar and circular polarization. This co­
efficient can be expressed in terms of 6j-symbols. For 
plane polarization 

=-1-[{ 1 1 0 }'+2 { _1 1 2 }21-t. 
fl 2it+1 io io it Jo ]o It 

For circular polarization 

~--1-[{1 1 0}2 3{1 1 1}2 1{1 1 2}21-1 
- 2it + 1 io io it + 2 io io it + 2 io io it 

The values of the coefficients {3 for the case when j 1 = 1 
are listed in the table. 

Formula (22) leads to the important conclusion that 
.Yw is smaller than y 10 even in the absence of collisions. 
For the neon line A = 1.15 f.l, an estimate gives yw/rw 
~ 1.5 in the case of plane polarization. 

So far we have assumed for simplicity that the time T 

Values of the coeffi­
cients {3 at j 1 = 1 

Circular I Plane 
polarization polarization 

~ I 

of the emergence of the resonant photon from the volume 
is large compared with the time 1/y~. If this is not the 
case, then it is necessary to replace in formula (22) the 
quantity y~ by y~ + T-1. An estimate of the time Tis 
given inrsJ. In the case of strong dragging Y1 T » 1 it 
is possible to use Holstein's result of variational calcu­
lation l?J for an infinite cylinder: 

'YtT=~~(nln-!'._)'", 
8 lo Lo 

where l 0 is the photon mean free path in the center of 
the line (formula (3)), and L is the radius of the laser 
beam. Formulas (18) and (20) can be generalized in ob­
vious fashion to the case when dragging of the spontane­
ous radiation from the lower working level (to the meta­
stable level) is also significant. 

We note in conclusion that radiation dragging can in­
fluence appreciably not only the form of the Lamb dip, 
but also other characteristics of the laser. As already 
mentioned above, the spectrum and the polarization of 
the fluorescence from the working levels change. In par­
ticular, the degree of polarization drops sharply. Con­
tributions to the polarized component of the fluorescence 
are made not only by the narrow lines, but also by the 
broad part of the spectrum. 

Allowance for dragging is very important also when 
mode competition is considered. Because of the mixing 
of the excited atoms with respect to velocities and with 
respect to the Zeeman sublevels, an effective interaction 
takes place between modes that are separated in fre­
quency or that have different polarizations. 

The appreciable settling of the entire amplification 
contour in generation in a He-Ne laser was observed 
by SpillerlaJ, who also observed other features charac­
teristic of a homogeneously broadened line. It can be 
assumed that these effects are the consequences of the 
dragging of the resonance radiation. 
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