
SOVIET PHYSICS JETP VOLUME 31, NUMBER 5 NOVEMBER 1970 

BREAKDOWN IN SEMICONDUCTORS IN AN ALTERNATING ELECTRIC FIELD 

Yu. A. BYCHKOV and A. M. DYKHNE 

L. D. Landau Institute of Theoretical Physics, U.S.S.R. Academy of Sciences 

Submitted November 6, 1969 

Zh. Eksp. Teor. Fiz. 58, 1734-1743 (May 1970) 

A consistent theory of behavior of semiconductors in an alternating electric field is developed on basis 
of the analogy between the adiabatic perturbation theory and the equations describing the behavior of a 
particle in a crystal in the presence of an electric field which arbitrarily depends on time. A number of 
problems which can be approximately solved are considered. 

INTRODUCTION 

THE behavior of a semiconductor in an alternating 
electric field has been investigated in a large number of 
papers. Mention must be made above all of the work of 
Keldysh. c 1 21 In particular, an attempt was made in c 21 

to find the probability of production of an electron-hole 
pair in a wide range of frequencies of the alternating 
electric field. 

In that paper, however, as well as in all the papers 
known to us dealing with the electric breakdown of a 
semiconductor, use is made of perturbation theory, 
which is not valid in these problems, but is justified by 
the smallness of the electric field. In this connection, 
the previously obtained results are only qualitatively 
correct (they describe only the exponential character 
of the dependence of the breakdown probability on the 
field). At the same time, there is undisputed interest 
in this group of problems, in connection with the ques­
tion of developing a consistent theory of the behavior of 
a semiconductor in an alternating electric field. Such 
an attempt is made in the present paper. 

After deriving the fundamental equations, we shall 
present approximate solutions for a number of con­
crete problems. 

DERIVATION OF FUNDAMENTAL EQUATIONS 

In the coordinate representation, the Schrodinger 
equation in the presence of an electric field is given by 
( li = 1) 

i aljl(r,t) ={-1-(p+ JF(t')dt') 2 + U(r)}ljl(r,t), (1) 
at 2mo 0 

where U(r) is the potential of the crystal, F = eE(t), 
and E(t) is an alternating but homogeneous electric 
field. We change over to the momentum representation, 

t 
putting p' = p + J F(t')dt' 

0 

ljl(r,t)= ~ J an(P,t)ljlnp•(r)dp, (2) 

where l/1 np(r) are the stationary Bloch functions 

1Jlnp(r) = ei•'unp(r). 

Omitting the trivial transformations, we obtain a sys­
tem of equations for O!n(P, t): 

iaan(p,t) en(P')an(P,t)-i~' (!-.) am(P,t). (3) 
at .l..J. at nm 

m 
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Here 

( a ) J , aump•(r) - = uw(r) dr. 
at nm at 

(4) 

In (3) there is omitted the term with (Cl/ilt)nm since it 
can be included in the phase an· It is quite obvious that 

(a I at)nm = F(t) (a I ap)nm· 

We introduce in place of an a new quantity Cn by 
means of the iormula 

t 

an(P, t)= exp (- i J 8n (t')dt') Cn(P, t), 

and then we obtain in lieu of (3) 

(5) 

acn~,t) - I:'exp{-ij (em-En)dt'}(!tmcm(P,t). (6) 
m 

This system of equations coincides exactly with the sys­
tem of equations of the adiabatic perturbation theory 
(see, for example, £ 3 1 ). We confine ourselves to the 
case of weak electric fields, when transitions are sig­
nificant only between two neighboring bands, and we 
therefore retain in (6) two equations (n = 1, 2) for the 
valence and conduction bands. Usually, however, the 
smallness of the field is immediately connected with the 
possibility of solving the system (6) with the aid of per­
turbation theory, since the right side of (6) is propor­
tional to E. We shall show that perturbation theory is 
not applicable to the solution of the system (6). It is 
well known (see c4 1 ) that the matrix element (il/ilt) 12 

has a pole at the point t0 where € 1 = € 2 , and that near 
to 

Within the characteristic time of variation of the field 
T, the exponential in the right side of (6) changes by an 
amount TA (A is the width of the interband gap). In the 
case of slow variation of F, we have TA >> 1, i.e., the 
exponential oscillates rapidly within a time T. The sad­
dle point method is therefore employed. However, as 
we have seen above, the saddle point (€ 1 = € 2 ) coincides 
with the singularity of the matrix element, and the 
smallness of F yields nothing, since in the second order 
in F the singularity becomes stronger (this can be 
shown by integrating with respect to the frequencies), 
and exactly cancels the smallness of F. It follows 
therefore that slowly varying fields F(t) cannot be con­
sidered by perturbation theory. An exact criterion for 
the slowness of variation of F(t) will be derived below. 
At the present stage, our probi.em consists of showing 
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that besides the smallness of F the method of solving 
system (6) is determined also by the scale of the tem­
poral variation of the field. We shall therefore consider 
in this section, by way of a simple illustration, the case 
of a very short electric pulse, such that the time of its 
action T is given by 

T 

J (e,- e2)dt«;;; 1 
0 

(Tt.\«;;; 1). 

The exponentials in (6) can now be set equal to unity, 
and we get 

oc1 ( o ) -=- - c2=-y(t)c2, at ot Jl2 

OC2 = (_!...) c, = y(t) CJ. 
ot ot J12 

li prior to turning on of the field we have c 2 = 0 and 
c 1 = 1, then after turning off the field 

c2(oo)= sin [l y(t)dt] =sin[-1 r 12F(t)dt]. 

{7) 

(8) 

Obviously, r 12 ~ 1/./ mt1, and the argument of the sine 
function is ~ Tt1 F/v mt13 • Thus, a short pulse can pro­
duce strong ionization if 

F';it>FD=}'mA3, 

and perturbation theory is valid when F ~ F 0 • 

We begin the calculations for an arbitrary F(t) de­
pendence with the simple case of a square-root disper­
sion law 

e1,2 = ±'/~l'1 + r I rnA. 

Then, as is well known, the matrix element x12 (the 
field F is directed along the x axis) is given by 

iV~( l'!p.l.•)'l·( l'!p2)-' x12 =- - !!2+-- !!2+-- , 
2 m m m 

(9) 

(10) 

where p 1 is the momentum perpendicular to the field 
F. We introduce the following variables: 

F(t) , 1/ m/'!.1.2 ( 
T=l'!.l.t, j(T)=p;;• Px =v-1'1.-q(T), 11) 

where 

q(T)= qo + 1 1(-r')d-r'. (12) 
0 

In terms of these variables, the system (3) takes the 
form 

oa1, 2 i 2 /(T) a2, 1 
a:r= ±-zl"1 + q {T) a!,2=F 2(1 + q2(T)) ' (13) 

and the system (6) becomes 

OCJ,2 =± j{T)C2,1 exp{±i 's-y'1 + q2(T') dT'}· 
OT 2{1 + q2{T)) 

(14) 

Equations (13) and (14), just as before, are not conven­
iently solved. We therefore use the transformations 
used in a paper by one of the authors and Chaplik, [ 51 

i.e., we introduce in place of a 1 , 2 the quantities A and 
B defined by the formulas 

1 { ( q- i )'I• ( q + i) 'I•} a1=- (A+iB) --. +(A-iB) --. , 
2 q+t q-t 

i { ( q - i ) 'I• ( q + i ) 'I•} a2=- (A+iB) --. -(A-iB) --. 
2 q+t q-l 

and then we obtain finally for A(q0 , T) and B(q0 , T) 

(15) 

(16) 

A+iq~T) A+ ~B=O, .8-iq(;) B+-iA=O, {17) 

where the dot over the letter denotes the partial deriva­
tive with respect to T. For A we get from (17) 

.. [iq(,;) 1 1 ] (18) 
A+ -2-+4+4q2(-r) A=O, 

i.e., A as the function of T satisfies an ordinary second­
order differential equation. 

It follows from (18) that certain cases of the F(t) de­
pendence admit of an exact solution. [ 61 These include 
the case of a constant electric field, when the function A 
is expressed in terms of the parabolic-cylinder formula, 
and obviously the case of a rectangular electric pulse, 
when it is necessary to join together the region q = const 
and the region of action of the field f = f0 • 

We now proceed to consider different f( T) depend­
ences. 

2. PERIODIC ELECTRIC FIELD 

In the case of a purely periodic field 

/(-r)=f.,coswt, q{T)=qo+~sinwT, 
w 

(19) 

where w = U/ t11 and U is the frequency of the external 
field. We note first that the quantities a 1, 2( T) at an ar­
bitrary f( r) dependence have the following property: 

la,(-r)l 2 + ia2(T)i 2=const, 

i.e., they are independent of the time T. It follows 
therefore that the values of a 1, 2 at different times are 
connected with the aid of the unitary matrix 

(20) 

with 

ial 2 +lf:ll 2 =1, a=ll'=D, y=-[:I'=R, 

where D and R have the meaning of the transmission 
and reflection amplitudes (in our case the latter is the 
amplitude of the probability of production of an electron­
hole pair). By the same token, in a periodic field f( T) 
the problem will be completely solved if we know the 
quantities a and y corresponding to the shift of the 
field by one period. Naturally, in the general case they 
cannot be determined. 

We start with the case w << 1, or more accurately 

1 T - J-yt + q2(-r)d-r';!t>1. {21) 
2 0 

If it is recognized that A satisfies Eq. (18), then the 
condition (21) coincides with the criterion for the appli­
cability of the quasiclassical approximation for A. In 
the case when the condition (21) is satisfied and q{T) is 
periodic, we can solve (19) by using a method developed 
by one of the authors[ 71 in the problem of the quasi­
classical approximation. In our case the problem obvi­
ously corresponds to over-the-barrier passage, since 
the turning point turned out to be complex. These points 
T 0 are determined from the condition 

1 + q2 (-ro) = 0. 

In determining the turning points in (18) we have dis­
carded the term with q ~ fw << 1. However, this term 
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cannot be discarded completely. Allowance for this 
term leads to the appearance of a pre-exponential fac­
tor in A, analogous to those functions that connect a 1, 2 

and A{B). Without stopping to discuss the detailed 
transformations, we shall indicate the final result. Ob­
viously, the turning points are pairwise complex conju­
gate. 

Let us consider the case of sufficiently weak fields, 
when the condition 

'j, 2 W cos W't'o .1 
'I ' <{';. j w' sin,, 2w't'o 

(22) 

is satisfied. This condition is equivalent to the require­
ment that it be possible to consider each turning point 
independently (the ionization probability in this case is 
exponentially small). 

When the inequality (22) is satisfied, the phase D on 
going from the point T 1 to the point T 2 is determined by 
the integral 

1 '1"2 

2 J l'1 + q2(•) a,, (23) 

"' 
and 

1 ·~ 
IRI = exp{ - 2 rm J }'1 + q2 (•) a,}. (24) 

"'" 
with T1o and T2o the complex turning points, such that 

As will be shown later, the phase R does not enter in 
the transition probabilities calculated by us. 

By the same token we have found that knowledge of 
the position of the turning point in the period f( T) de­
termines completely the matrix U. If we put 

To = To'+ iTo", 

then we obtain from the condition 1 + q2 ( T 0) = 0 

sin w<o' ch wt0" =-~ q0, ' h " w (25) fw COS WTo S WTo = ± y:, 
It follows from (2 5) that if T~ w is a solution, then the 
point rr - T~ w is also a solution. It follows therefore 
that when q0 * 0 and WT ~ t n rr there are four turning 
points in the period: 

t'w == 't'10' ± i'rw", 't2o = :rt I Ul ~ Tw' + il:10"· 

We now readily obtain an expression for the components 
of the matrix U, corresponding to the passage through 
the period T of f( T). 

with 

a = e;(~•+%) I D 12 - eHo,-o,) I R I 2, 

y = 2RID1e-;••coscp~, 

(26) 

1 tt,.'w--~'10 --- 1 1':o'~7-T 

'PI=z ~ vt+q'<•ld•, cp,=z ~ ft+q"<•la'. (27) 
-.;'t~ n/w---:- 10 ' 

We note here that we have used the condition 

IR(<IO')I = IR(:rt/W-'t'I01)1. 

We shall not present the intermediate steps connected 
with the multiplication of the matrix U (they are trivial), 
and present only the final formulas. 

The probability of production of a pair as the result 
of passage through m turning points (with different val­
ues of T~) is 

with 
cos <p = cos (<p1 + cp2) - 2IR 12 cos cp 1 cos cp2. (29) 

We proceed now to analyze the formulas (28). We first 
rewrite the first formula in (28) in a different form: 

· [ (jll + <pz • 'PI - (jl2] -I lv2nl 2= IRI 2 IDI 2 cos2cp1 sm2 ncp IDI 2 cos2- 2- + IRJ2 sm2 - 2-

X [ ID 12 sin2cp1 + cp2 + IR 12 cos2cp1- cp2 ]-I (30) 
2 2 . 

We see therefore that when cp1 + cp2 = 2k rr 

cp ~ 2kn + 21 R cos (jll -; 'P21 , 

where k is an integer and 

I Y2n 12 ~ sin2 [ 2n I R cos (jll-; 'P21]. 
The result is perfectly understandable. The condition 
cp 1 + cp2 = 2krr is obviously none other than the reso­
nance condition (t. = 2kS1), and near the resonance the 
particle, within a number of periods 

n = ( 21 R cos 'PI ~ cp2 1) -I 

passes, with a probability equal to unity, from one band 
to the other-a situation well known in quantum mechan­
ics.[41 (The same occurs also when cp1 + cp2 = (2k + 1)rr, 
when k = I2R sin {(cp1 - cp2)/2) /- 1 ). Of course, this ef­
fect becomes smeared out by collisions and becomes no­
noticeable when T 0 ;:!:, T/IRI (T 0 -free path time). It is 
clear that the second term in {29) describes the energy 
uncertainty connected with these transitions. If we con­
sider times T < T/ I R I, then 

cp ='PI+ <p2. {31) 

The main contribution to the interband transitions will 
then be made by terms in {28), where cp = mrr when 
IY2n/ 2 ~ n2. In these cases both formulas in {28) coin­
cide. The usual quantum-mechanical procedure leads 
to the following formula for the transition probability 

2~w2 ( m:rt cp1 - <p2 ) ( 1 JT )(32) 
=-:rt-IRI 2cos2 2 +--2- ll To l'1+q2(<)d-r-mw. 

This formula is analogous to corresponding formula in 
Keldysh's paper.[ 21 The difference consists, first, in 
the fact that Keldysh's formula has an incorrect pre­
exponential factor, and second that according to {32) the 
resonances with absorption of even and odd numbers of 
quanta have different probabilities. 

Leaving out the intermediate calculations {for de­
tails see [21 ), we present the final expression for the 
total interband transition probability 

__ 2Q(mQ)'f, { (ii + 1 )K(x)-E(x)} w--- exp -n -
n3 x Q E(x') 

[ :rt ] '/, I:oo { K ( x)- E ( x) } ( /i ) X -- exp - nn F x - - . 
2K(x') E(x') n 'Q 

n=O 

{33) 
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Here 

(34) 

the angle brackets denote the integer part of the quan­
tity, and K{K) and E(K) are complete elliptic integrals 
of the first and second kind. The function F n< K, x) in 
{33) is given by 

u~ , ( n + (x + 1) ) 
F,.(x,x)=e-Y•' J eY cos2 n+cy dy. 

0 2 
(35) 

In the last formula 

-[n2(n+(x+1)-x)]''• l/2QK(x')( y ) 
Yo- 2E(x')K{x') , c=v nt1x chy +arcsinx.' . 

(36) 
The difference between formula (33) and corresponding 
formula (37) of l 21 lies in the fact that (33), first, has a 
different numerical coefficient (in l 21 the pre-exponen­
tial factor for I R 12 is equal to ( 11' /3 )2 , and in our case 
it is equal to unity), and second, in our case F n con­
tains the square of the cosine. 

We note the particular case when y >> 1, i.e., 1 - K 

<< 1. In this case the terms of the sum in (33) behave 
like (1/y)m, i.e., it is necessary to retain only the term 
with n = 0. We then obtain for the transition probability 

w = !~ (mQ)'1'exp ( 2<~ + 1) )( 1iv' rii'l+l> F0 ( 1, ~-). (37) 

Here F 0 is given by formula (3 5) with 

Yo=[2((~+1)- ~)r c~2ll¥ :. (38) 

Obviously, Yo~ 1 and c << 1, i.e., we get with good ac­
curacy, putting c = 0, 

Fo(1, ~)=cos2 (~(~+1))e-Y•'1ev'dy. (39) 

It follows from (39) that in the approximation under 
consideration the probability of absorption of an even 
number of quanta (~ = 2m0) is equal to zero. 

We now make a few remarks concerning the case of 
sufficiently strong fields (confining ourselves as before 
to the two-band approximation and to low frequencies). 
From the equations for the turning point (25) we see 
that if w/fw << 1 we get 

uno = nn + cp, cp ~ 1. 

The latter circumstance makes it possible to expand 
the expressions in the square brackets in (18) in pow­
ers of T near T 0• We assume here that fw ~ 1. We 
then obtain for A near w T0 = n 1r 

.. { if.. 1 1 } 
A+ (-1)n-2-+4+4[qo+(-1)nf.,tF A=O. (40) 

The solution of this equation is expressed in terms of 
the parabolic-cylinder functions, and Eq. (40) is valid 
up to times T for which T >> 1 but w T << 1. 

After simple calculations we find that the phase of 
the quantity D (see (20)), on going from the point T 1 to 
the point T 2 is now given by 

1 '• n 1 
-Jl'1 + q2 ('t) dt+---ln(4ef .. )+cpo, 

2 4 4/ .. ,, (41) 

e2'~·= r (1-~) j r (1 +_!_._) 4/.. 4/ru 

(when fw << 1 formula (41) goes over into (23)), and 
the reflection probability is 

IRI = exp (-n/4/.,). (42) 

The transformations that lead to the probability of the 
production of a pair per unit time are perfectly analo­
gous to those performed for the case fw << 1, and will 
not be presented here. 

3. CONSTANT AND PERIODIC ELECTRIC FIELDS 

The last case which we shall consider is when the 
field is a superposition of a constant and periodic elec­
tric field. For simplicity we assume both fields to be 
directed along the x axis, i.e., 

/{'t) = /o + fCiJ cos W't. 

The probability of the photonless pair production can­
not be calculated by perturbation theory in the case of 
weak fields at any frequency. The situation is different 
with the probability of pair production with absorption 
of a single photon. In first order of perturbation theory 
in fw we have 

1 .. d't • ~. } 
c2(oo)=--f., J 2 exp i(JJT-i y1+q2 {'t') d't' . (43) 

4 -M1+q {'f) 

Using the saddle-point method, we find that the pre­
exponential factor is equal to ~ f wl w 2 • If the condition 
fw / w 2 << 1 is satisfied, then we can confine ourselves 
in the calculation of c2 to the first order of the adiabatic 
perturbation theory. The saddle points are determined 
in this case from a system of equations analogous to 
(25): 

f '+f., . ' h " o'to -sm w'to c W'to =- qo, 
(I) (44) 

I " + j.. ' h " ± ,,-f--2-o'to -cosw'to s oo'to = r -oo . 
(!) 

The usual method of finding the absorption probabiUty 
consists in neglecting the terms ~fw in (44), In this 
case we obtained formulas for the Franz-Keldysh ef­
fect. 

In the general case it is of course impossible to 
solve (44). When q0 = 0 (near the bottom of the band), 
the first equation of (44) takes the form 

sin(JJTo' = /o (45) 
f.,chw'to" ' OO't'o' 

It follows from (45) that, besides the turning point 
with T~ = 0, there are other turning points, for which 

ch (JJTo" > /o /f.,. 

When 1- w << 1 and fw < f0, we get with good accu­
racy at T~ = 0 

'to"=±Y1-w2 //o. 

The absorption then decreases at frequencies 1 - w 
~ f~/s. This means that allowance for the other turning 
point is immaterial in the case when 

f.,exp(-to'1')~fo. (46) 

We now consider the case w << 1, i.e., the question 
of the influence of the constant field on multiquantum 
absorption. The derivation of (32) is based on the exist­
ence of a large (n >> 1) number of turning points of 
identical level. If f 0 << fw, then it follows from (45) 
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that there are at least k solutions w T~ = k 1T, if 

fo/fw ch W-ro" < 1/kn. 

In this case T~ is determined from the equation 

I "±f., h " ± f JO't'o -s W't'o = . 
(I) 

{47) 

(48) 

If the condition {47) is satisfied, then it is possible to 
neglect in {48) the term with f 0 , and we obtain 

sh ono" = ±wff,.. 

By the same token the final condition for the existence 
of the k >> 1 turning points of almost identical level is 

{49) 

To find the probability of the interband transition in 
this case it is necessary to introduce a set of matrices 
Ui, describing the transitions between successive turn­
ing points. Of course, in the general case they cannot 
be multiplied. 

In conclusion we note one circumstance. All the cal­
culations, starting with formula (14), were carried out 
for a square root dispersion law. However, if the con­
ditions {21) and (22) are satisfied, then the main contri­
bution to the transition is made only by close vicinities 
of the turning points. At the same time it is well known 
(see [ 1' 4 J) that near the point where E 1 = E 2 the matrix 
element is of the form 

By a simple repetition of the reasoning given in a paper 
by one of the authors, [ BJ we arrive at all the results 
obtained by us (for w << 1), except that the square­
root dispersion law is now replaced everywhere by an 
arbitrary dispersion law. 
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