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The nonlinear electrodynamics of a thin superconducting film located in a nearly-critical stationary 
magnetic field is considered. At temperatures close to Tc, anomalous terms in the equations for 
superconductors become important. A very pronounced nonadiabatic pattern of dependence of the 
gap t::.. on the field strength is observed in this case throughout the entire frequency range under 
consideration ( 1/r~ ~ w « 1:::.. 0 ). This circumstance permits one to derive the quantitative depend
ence of the penetration factor D on the microwave power. The hysteresis nature of the dependence 
of D on the microwave power, which arises in this case, is considered. Current states of the film 
are also investigated briefly. 

1. GENERAL FORMULAS 

THE nonlinear electrodynamics of thin superconducting 
films was first considered by Kulik[ 1J. However the 
nonstationary equations used in[ 1J, as shown in[ 2 j, are 
not valid at finite temperatures. In general, in accord
ance with[3J, there are no sufficiently general equations 
for superconductors in strong alternating fields. We 
shall consider below a thin (d « 0, ~ 0) superconducting 
film placed in a strong constant magnetic field 
( 1 - H/Hc « 1). This case, corresponding to the so
called "gapless superconductivity," is described by 
the equations derived in[4l: 

[ ( H ) (Axz ) A2 ] oil 8 a 1-- -------- !1.-~--y/l +2nTUil=0, 
He I I sHed2 2faHe2d2 at (1) 

i= cr [E--1-w' (~+ Po)Ail 2 ]· :nTiic 2 (2) 

Here A is the vector potential of the alternating field, 
and 2d is the thickness of the film. The constant mag
netic field H is directed along the y axis parallel to 
the plane of the film (the xy plane), while the angle 
brackets () denote averaging over z, 

a=4nT1Jl' (4-+ po) po, 1i '(1 ) ~=2'1' 2+Po ' 

1 [ , ( 1 ) Po ,, ( 1 ) ] y= B:nT -¢ 2+ Po -g-'1' 2+ Po ' 

1/J(x) is the logarithmic derivative of the Gamma func
tion, 

1 2jaiJe2Hld2, 
Po= 2:nT 1ic2 '· 

and D = vl/3 is the diffusion coefficient. 
The anomalous term U satisfies the equation 

( d 1 ) 1 dfl2 
-at+:t; U=-8(:nT)2 /(po)dt, 

(3) 

where f(po) = (2ponP'0'2 +Po)+ 7'~"(% +Po) and 1/T~ 
is the reciprocal time of homogeneous relaxation. 

In the absence of an alternating field, the gap 1:::.. 0 is 
equal to 

flo2 =~( 1-!!_). 
'\' He 

We introduce the parameter v = f(p 0 )/ 47TTy and 
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change over to the dimensionless quantities 

ll(t)=TJ(t)!:io, H=HcH', z= V: z'd, ro= Sn:po ro', 

A H ,(2A'd B:nTpo 1/2 , . 8nTp0 1/ZH ''d 
= c V 3 , E = ~ f 3HcE d, 1 = ~ V 3 cO"/ • 

Equations (1)-(3) take the form 

1 d • 
[(1-H')- 2 (Ax'z') -.4'2]'12 __ ...2!.::,_(1-H')TJ4 + U'TJ2 =0, 

2 dt' (4) 

(~+-1-)u'=-v(1-H')d112 (5) 
dt' -r.' dt' ' 

a A:' 
-j' =-a?+a(1-H')TJ2A', 

where 

a =[ljl'('h + Po))2{2nTy. 

The dependence of Po on T is described by the 
equation[s] 

(6) 

In :. + 1Jl (-} + Po) - ¢ ( +) = 0. (7) 

Near the critical temperature we have Po 
= 27T-2( 1 - T/Tc) « 1 and 

:n2 7~(3) n 4 

/(po) = 4po ' '\' = 4:nTc ' a= 14~(3) ~ 5·8• 

n 2 1 
v= 28~(3)Po>L 

When T - 0, to the contrary, 
Po > 1, a= 12, v = 3 f (2p02) <;;; 1. 

Thus, the anomalous term becomes significant when 
T- Tc. 

In the units employed here, Maxwell's equation takes 
the form 

16/s nTpocrd2 

1ic2 

Equations (4)-(6) are analogous to those obtained in[21. 
We shall henceforth omit the primes from the various 
quantities. 

Let us make one preliminary remark. It can be 
easily verified that the ratio of the term ( Axz) to A2 
in (4) is of the order of ii- 1 (d/0)4 (1- Hr1/ 2. Thus, 
terms linear in the field are significant only in weak 
fields, H « (d/0)4 (1 - H)-112 . We shall henceforth 
neglect the linear terms in (1) and (4). 
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Assume that an external microwave is incident on 
the film. Let the frequency of the wave be much 
larg~ than 1/r~. In Eqs. (4) and (6), the vector poten
tial A describes the field inside the film, and its con
nection with the microwave field will be established 
later. When r~w >> 1, just as in[ 2l, we obtain from (5) 

U = -v(1- H) ('1]2 - rf). (8) 

The bar denotes averaging with respect to time. Taking 
(8) into account, Eq. (4) has an exact solution (see[ 3l): 

t I 

112 = I'J2(0)F(t) [ 1 + 21']2 (0) (1- H) (v + 1) s F(t')dt' r, (9) 
0 

where 
t 

F(t)= exp {2 s [ (1- H) (Vi]2 + 1)- .tF]dt' }· 
0 

The condition for the existence of a stationary solution 
is obviously 

(1-H) (vr]'+ 1)- X' >.0. (10) 

In this case we have when t - oo 
t 

I'J 2(t)=F(t)/2(1-H) (v+ 1) s F(t')dt'. (11) 
0 

Let the external field be harmonic, E = Eo cos wt. 
Then the vector potential is 

~ Eo . 
A=--smrot-q, 

(J) 

where q corresponds to direct current. The inequality 
(10) determines the critical ( 17 2 = 0) value Eo = Ecr 
(see[ 1l) at which a nonzero solution of (4) appears for 
the first time. When q = 0 we have 

Ecr2 = 2ro2 (1- H). 

Let us calculate 112. We note to this end that (11) 
can be written in the form 

TJ'(t)= 2 ( 1 -H~(v+i) {1n[I F(t')dt']}'. t-+oo. 

For a harmonic field 

(12) 

F(t)= exp {2 [ (1- H) (v~2 + 1)- :~:- q2] t + f(t) }, 

where f(t) is a periodic function. Transforming, just 
as in[ 2 J, the obtained expressions for t-oo, we get 

-- Eo2 q2 

TJ'=1-----.-
Ecr2 1-H· 

(13) 

Substituting once more (8) in (4) we obtain, with allow
ance for (13) 

1 [ - .iP-A2 ] --TJ' +(1- H) (v + 1)'1]2 - 112 -(1-H) (v + 1)1']4 =0. 
2 1-H (14) 

We represent 11 2 in the form 11 2 = ~ + ( 1J 2 ) 1 , where 
( 11 2 h describes rapid variation of 1J 2 with frequency 
~ w(1]2h = 0). From (14) we obtain for the alternating 
part of ( 1J 2 ) 1 the estimate 

[ ( ro ) - ] iP-.iP-
0 1-H +(v+1)(TJ2+(TJ2)I) (I'J'}I~ 1-H (YJ2+(t]')t). 

We see therefore that when v » 1 and v~ » 1, 
and for all frequencies ( wr ~ » 1), we have ( 1J 2 ) 1 

« ~ and in particular when w « v( 1 - H) we have 
(17 2)1 ~ 1/v. 

It is interesting to note that in[ll the condition 
w « 1 - H would correspond to the fully adiabatic 
picture. However, as follows from the foregoing, even 
in this frequency region, when Tc - T << Tc, the 
presence of the anomalous term v >> 1 leads in our 
case to the opposite situation, 1J >:::1 1j. Thus, when Tc 
- T << Tc, the interaction of the microwave power 
with the superconducting film can be described in a 
wide range of frequencies in the language of average 
quantities, which greatly simplifies the mathematical 
formalism and makes it possible to cope with the en
tire picture. 

Assuming that the temperature satisfies the condi
tion v >:::1 0.3 (1- T/Tct 1 » 1, let us turn to the equa
tions describing the behavior of 'if(t) in the case of 
slow variation of the applied microwave power in the 
absence of a de transport current through the film. 
We note first that, in the ordinary units, 1/r~ ~ 10 8-109 

sec-\ and therefore the limitations on the frequency 
(1/r~ « w « ~o) yield 

10S+10•sec -1 ~ ro ~ 5·10111"'(1- T /Tc)';,(1-H !He)';, sec-'. 

The condition w « v( 1 - H) takes the form w « 2 · 
x 10 11 T 0(1 - H/Hc)sec-1 • Consequently, there is the 
possibility of experimentally investigating the phenom
ena considered here even in the centimeter band. 

Let us separate again 1J 2 in (4) into two parts: 1J 2 

= ~(t) + (17 2 ) 1, where (7J 2h is a rapidly oscillating 
increment (I ( 7J 2h I » 7] 2 , and by virtue of this inequality 
it is possible to disregard the difference between ~ 
and 1)2 ), whereas 'if( t) varies slowly. Retaining the 
principal terms and averaging over the period, we ob
tain from (4) and (5) 

rJ = (1- H) [Tj2 - 1 + Eo2 (t) / Ecr2], 

·u + -r,-1[] = -v(1- H)~', 

from which we finally get 

'V....:!:.._YJ 2 =_1_( 1 -~,-- Eo 2 (t) )-~( Eo2 ). (15) 
dt T8 Ecr2 dt E cr2 

In accordance with the remarks made above, this equa
tion is applicable only when 1j2 >> 1/ v. Of course, when 
EUE~r > 1 we have, according to (10), 1f = 0. 

2. TRANSMISSION COEFFICIENT OF MICROWAVE 
RADIATION 

Let us establish now a connection between the field 
of the incident wave, the field of the wave passing 
through the film, and the field Eo inside the film. We 
shall assume the transmission coefficient 
D ~ (5 2 )/xd)2 , where 1i is the depth of penetration of 
the field, to be small. The field E0(z)exp(-iwt) inside 
the film ( -d < z < d) satisfies the equation 

b f)2E oE -
4;:;- o'z =m+a•t2(1-H)E. 

Expanding, as in[ll, E 0 (z) in powers of z/5, using the 
continuity of E and H on the boundary of the film, and 
neglecting terms of order li?';\.d and d/;\. (;\. is the 
wavelength), we find that the amplitude of the trans
mitted wave is E 2 = E 0 , and the amplitude of the inci
dent wave E is connected with Eo by the relation 

9 [ { 4nro ) 2 ( 4na ) ' _ 1 (kd)'E'=~; -b- + b (1-Ji)'YJ' E02• 
(16) 
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Equations (15) and (16) determine the transmission 
coefficient D = ( E 2 /E)2 = (E 0 /E) 2 and the behavior of 
the reduced gap 1) as a function of the microwave 
power. 

Let w = w/a(1 -H). We then get from (16) 

Eo'=-----'-( k_d_c_)_' ---
9/4(4na/b)2(1- H) 2 1]4 +iii' 

The transmission coefficient is 
(kd) 2 

D = -------'-----'-----=---
9/4(4:na/b)2(1- H) 2(rJ4 +iii') 

(17) 

The limiting values of the transmission coefficient are: 
in the normal state 

D- (kd)' '(6cr2\2 6cr2=~ 
s-9/ 4 (4:na/b) 2(1-H) 2 iii2 :n Td/ ' 2:ncrw 

(for films d ~ l ~ 10-6 em we have DN ~ 10-3-10-4 )); 

in the superconducting state at low frequencies 
w « 1 and in a weak external field 

Dso= (kd)' Dso =iii'. (18) 
9/.(4:na/b) 2 (1-H) 2 ' DN 

Introducing the wave intensity I = ScE 2/ 81T, where S 
is the area of the surface of the film, we rewrite (17) in 
the form 

(19) 

Here I= r/Icr• where the critical intensity Icr 
= ScE~r /81TDN, according to (10) and (12), determines 
the instant of occurrence of 1f ;.o 0 when I tends to Icr 
from the direction of the normal metal. In ordinary 
units 

Ecr2 = w' (2dH,)' (1- !!_) 
c2 3 H, ' 

and therefore (see[ 6 l) where T - Tc and w = 10 10 

sec-1 

fer~ 10-4T,0(1- T/Tc) (1-H/H,)S(cm2}(W]. 
DN 

The solutions corresponding to 1f ;.o 0 are determined 
from (15), in which we can omit the last term if we 
confine ourselves to slow variation of I (and v » 1 ). 
With allowance for (19) we get, finally, 

1]=~(1-~'--~r) 
2v-ter] 1]4 +iii' · 

(20) 

Let us consider first the steady state regime. 
Equation (20) yields 

W + iii 2) (1 - ij2) = iii2l. (21) 

Expressing 1f in terms of the ratio D/DN = x, x 
= w2/ (Tf4 + '(;?), we obtain from (21) an equation for x: 

iii)'(t -x)/x = 1- xl. (21') 

Figure 1 shows schematically the behavior of x as 

FIG. I. Dependence of D/DN on 
I (shown schematically; the abscissa 
scale is stretched). The dash-dot line 
corresponds to I* for &P = 1/4. 

a function of I/Ici. The dashed lines correspond to un
stable sections of the curve (see the Appendix). Curve 
1 is obtained when w2 < 7'4, curve 2 corresponds to 
w2 = 7'3 , whereas curve 4 takes place when w2 > %. The 
limits of the stable sections correspond to the points 
B and C. For the point B we have 

l - 2 (1 +(l'1=3ii)2) (1- 3iii2)+ 12iii2 

B- 27 iii2 ' 

9iii2 1 --
XB= 1]B2 =-(1+l'1-3w2). (22) 

2(1 + l'1- 3iii2 + 3iii2) 3 

The points C correspond to 

l - 2 (1-l'1=3(;j2) (1- 3iii2)+ 12iii' 
c- 27 iii' ' 

9iii2 1 -
xc= 2(1-l'1-3iii2 +3iii2)' rJc'=3(1-l'1 - 3iii'). (22') 

As is seen from (18) and Fig. 1, the hysteresis loop 
is large when w2 < 7'4 , particularly when w2 « 1. The 
latter case corresponds to lB ~ %1w2, Ic ~ 1, and 
DB = %DS0 and De = DN. In the frequency region 7'4 

< w2 < 7'3, the hysteresis section lies at I< Icr• and 
finally at w2 > 7'3 there is no hysteresis. 

The existence of hysteresis of the transmission 
coefficient was pointed out by Kulik[ 1J. The condition 
v >> 1 makes it possible, as we see, to obtain, unlike 
in[ 1J, the quantitative picture of the phenomenon. 

One must assume that a stationary regime is possi
ble at a given intensity, but only on one of the sections 
of the curve of Fig. 1. In other words, when the power 
changes the regime will change jumpwise from the 
upper to the lower section of the curve and back. The 
question of the choice between the two stable roots of 
Eq. (21) is quite complicated. It seems to us, however, 
that in this case it is possible to use Langevin's gen
eral method of random forces[ 6 ' 7 l. To this end, we note 
that it is necessary to insert in the right side of the 
initial equation (1) the fluctuation force f( r, t), which 
has a random character [aJ. The correlator of the 
forces (the averaging is over the statistical distribu
tion) 

(f(r, t)f(r', t')) =Ab(r-r')6(t-t') 

is chosen in such a way that the mean value 
(.6.(r, t).6.*(r', t')) above the transition temperature 
coincide with the thermodynamic mean[ 8J. Near Tc we 
have A= ( ?'2 )Vn1T2Tc. 

The next step is to write a Fokker- Planck equation 
for the function W(Tf, t), which has the meaning of the 
probability of the given value 1f the instant t[ 7 J. Recog
nizing that the characteristic frequencies of the fluc
tuation forces are large, we can rewrite (20) in the 
form 

1]=~(1-fi'-- iii2 J - f(t)' 
2VTel] 1]4 + iii2 ) ~L'.o 

where f(t) are averaged over the volume of the film V: 

<f(t)f(t')>= ~- 6(t- t'). 

For W(f1, t) we have 

aw a _ A J'W 
-=---=(F(rJ)W)+ , 
at all 2 (BL'.o) 2V arJ2 

where 

F(rJ)=-----= 1-rJ'-----l . - 1 ( - iii' ) 
2v't'er] 1]4 + iii' 
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FIG. 2. Dependence of I* on w2 . 

o. B>o L,~· --'--"---'-o='=. z~---'--"-'-o. -,-'J ~iii z 

The stationary solution W(7)) has the form of 
exp{S(7))}, where 

S(i]) 2(~~o)'V s F(rj)d~. 

The stable roots of Eq. (21) correspond to the maxima 
of the distribution function. The transition from one 
branch to the other takes place thus at an intensity I* 
determined by the equality of the functionals S (Tj2 ) 

= S(7)2 ) for the two stable solutions of (21 ). The func
tional S(7)), which plays the role of the "effective 
energy,'' is proportional to the quantity 

( 1 J) - 1 - J - (23) 
- Inl'j- 2 TJ'+Tin(l'J4 +m2). 

Figure 2 shows a result of the numerical calculation 
of I* as a function of w2 • At (;)2 RO 0.16 we have I* = 1. 
This raises the question of what happens with further 
decrease of the frequency. Expression (23) for S(Tf) 
diverges logarithmically as 7)- 0. This means that 
the method used above ceases to be applicable (it is 
impossible to use the mean values near 7) = 0). Thus, 
this question still remains open. 

3. FILM UNDER NONSTATIONARY CONDITIONS 

We now proceed to the question of the behavior of 
Tf and of the transmission coefficient D in the case of 
slow variation of the external microwave power. In the 
case it is necessary to use the general expression (20). 
In the case of sufficiently slow variation of I far from 
the critical points B and C of Fig. 1, the value of Tf, 
in the main, follows adiabatically the variation of the 
power. Let us assume that we have succeeded in this 
manner in entering into the metastable regions A'B or 
D'C. The adiabatic behavior of 7) will take place up to 
the critical points B and C, but the vicinities of these 
points already call for a special analysis. 

Let us examine, for example, the behavior of 7) 
near th~ point B. We put I= 1}3 + "L + lB - ]w + Tt, 
where IB is defined by (22), 110 << 1, and I' is the 
derivative of I with respect to t. If I'< 0, the value 
of i7 is close to 7JB, viz., 7)2 = 7JB + o. So long as io I 
« 1, we obtain from (20) for 1i the Ricatti equation 

' 1 
(TJB• + m') 6 = --[ (- Iw + rt) m' + (&l'JB'- 1) .~n (24) 

'teV 

When t = 0, 1i is equal to haC::?/(37JB- 1)112 • A solu
tion of (24), satisfying such an initial condition, is 

further increase oft. The solution (25) is transformed 
into 

(26) 

(we now reckon the time t from the instant that I goes 
through IB). With increasing t, the numerator (26) 
vanishes, after which 1i becomes negative. Then the 
denominator tends to zero. In this region, using the 
relation 

1 d 
1-'J,(x) -l•;,(x)= Tx'"[L•;,(x) + h(x)] + a;-['-';,(x) + l•1,(x)], 

we can write (26) in the form 

6- V'te(TJB4 + Ui') 1 (27) 
- 31'jB2 ~fn=t' 

where Ct~2 = x0 is the root of the equation J - )"3(x) 
+ J)"3(x) = 0 (x0 RO 2.3); 

t ~ 27 [ v't,(TJB4 +Ui2) ]';, 

B ~ ' ( 1 - 3Ui2) 'i•(lj (J') '/, . 

When t approaches tB, the value of 1i increases with
out limit in absolute magnitude, so that we must turn to 
Eq. (20). geglecting in it the quantity I 1 RO l'tB 
~ ( IITt;~? I' )273 « 1, we obtain for 'f) the quadrature 

;:r (-TJ. -1 w'J [l'J' 1 
' - _ ==--(t+const). 

"B\+s ro'I 8 - (1 -l'J') (l'J4 + ro') vr, 

Expression (28) must be "joined together" with the 
solution (27). 

(28) 

The denominator of the integrand in (28) has a 
double root 7JB and a simple root 7Jg = 1 - 277B· Calcu
lations yield 

_1_(tB-t)= "'B•+m' 1 +(1- TJo•+m' }In(TJn'-;') 
He ( f - 3Ui2) 'h 'T]B2 - 'J] 2 1 - 3Ui2 

l'jo4 + Ui2 . _ 

+ 1 _ 3w2 In ( '1' - 'J]o2). (29) 

If )"4 < (;)2 < %, then 7Jg lies on the section CD (Fig. 1), 
and when t - oo we have Tj2 - 71~, i.e., the last term of 
(29) becomes important, and we obtain 

{ 1 - 3Ui2 tB- t } 
'J] 2 ='J]o2 +exp ------ . 

'J]o4 + Ui2 V'ts 

u w2 < Y4, then Tf2 vanishes (accurate to ~1/v) at 
t = t*, where 

'l'Jo• + o:;' } 
+ 1 - 3Ui' In I TJo'l . 

The last term here represents a small correction, 
since tB >> liT€, therefore the principal time of varia
tion of 71 reduces to tB. The case of decreasing power 
is considered analogously. 

4. CURRENT STATE OF THE FILM 

(25) Assume now that a constant transport current 1 

Here 
2 -(3 2 1)'1' 

C=-~-=-(T')'i•, 
3 '"',( ;ln4 + w') 

and t 1 is determined by the relation -l10 + Tt = -I't 1 • 

When t 1 = 0 we have I= IB, and t 1 reverses sign with 

flows through a film situated in an external microwave 
field. In this case we obtain in place of (15) 

~t = _1_ ( ,f-~2-~- ___r_) 
V'te EKP2 1 - H ' 

J=a(1-H)fj2q. 
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,
' 

FIG. 3. Schematic dependence of 
current on 1i at a given frequency 1/4 
< w2 < 1/3 intensity lc <I< lB. 

As a result (see (19)) 
.: 1 ( i!J2[ 4 ( J )2 1 ) 
fJ=2vr•rl 1 - 112 - T)4+w2 -27 j;; fl4 (30) 

where jcr = (% v'3) a ( 1 - H)312 is the critical current 
at I = 0. The stationary solutions of (30) have the 
form 

~(L)2 ="1J4[1-7)2-_ uH ]· 
27 fer '114 + i!J2 

The expression in the square brackets in (31) 
vanishes if 1j and I at a given frequency are connected 
by the relation (21), i.e., if they are determined by the 
curve of Fig. 1. As seen from Fig. 1, at different w 
and I the expression in the square brackets in (31) can 
have one, two, or three roots. The dependence of the 
current on 1f is quite complicated in this case. Figure 
3 shows, for example, the most interesting case, in our 
opinion, of three roots of the expression in the square 
brackets in (31), corresponding to Ic <I< IB at }'4 
< w2 < Ys. 

The maxima of the right side of (31) are determined 
by the equation 3ij"2 - 2 + 2w4I/(~ + w2)2 = 0. we see 
that this equation coincides with the equation that de
termines the limits of stability of the stationary solu
tions of Eq. (30) with respect to infinitesimally small 
perturbations (see the Appendix). Thus, the values of 
11 corresponding to the extrema of the right side of (31) 
coincides with the values of 11 which determine the 
limits of the instability. An analysis of different possi
ble curves shows that only the decreasing sections of 
the dependence of the current on 11 are always stable. 

The question of which of the decreasing sections of 
the current (I or II in Fig. 3) is actually realized can 
be answered in the same manner as in Sec. 2 (the 
random-force method). In this case we have for the 
stationary functional S(Tf) (see Sec. 2) at specified I 
and] 

s""'<1-I)In.;J+.!...In<:;j4+ro2>-..!..fi2+...!..(..L) 2_1. (32) 
4 2 27 j cr 1)4 

Section I is realized if S( I) > S( II), and vice versa. 
Let us turn to the case shown in Fig. 3 at 1 = 0, if 

I > I*, the point 77 1 will be realized, in accordance with 
the result of Sec. 2 (S(1j1) > S(Tf2 ). Therefore the 
section II is not possible at all, for when the direct 
current is introduced we can only decrease the parame
ter 11 of the superconductor. However, if I < I*, then 
the section 2 is initially realized at low current, and 
then, when the current increases, the transition from 
curve II to curve I is possible. With further increase 
of 1, the superconductivity is destroyed by the current 
These transitions are revealed by the jumps of the 
transmission coefficient. 

Let us dwell briefly on the question of the genera
tion of a difference frequency by the film in the pres
ence of a microwave containing two close harmonics. 

Let the electric field inside the film be equal to 
E 10 cosw1t + E2ocosw2t. We assume that Tew 1 2 >> 1 
and 0 = W1- w2 << w1,2. For arbitrary temper'atures 
we obtain for the amplitude of the harmonic 77 2 of the 
frequency 0, in accord with£ 41, 

This expression is valid also for arbitrary intensities 
h CZJ E~ and I2 <ZJ E~, provided w << 1 -H . 

The field generated by the film in the space outside 
the film is connected with the current flowing through 
the film by the relation 

. b iJH 
-,=4;/h• 

Therefore the amplitude Ho of the magnetic field 
generated by the film, in accordance with£ 71, is 

4n 1)112 
Hn=-dJ=-· 

b '112 

We put Her= 41Tdjcr/b, and then 

H11 J 1)112 

Hcr=-;;;-iJ2 • 
At a temperature close to Tc, Eq. (19) is valid, and 

therefore 
H11 J 2m2 -

Her= Jl. fer fJ2(fJ4 + i!J2) l'Tlh (33) 

and Tj and rare connected by Eq. (31), where I= 11 
+ l2. In weak fields and for a weak current, we have 

H11 J 2iJJ2 --
n=J.t.-f-1+w2l'llh 

cr cr 

In rsJ the plot of Ho against I 1/l2 has a maximum. 
It is seen frOJE (31) a~ (331 that Ho actually has a 
maximum at I1 = I2, if h + I2 = const. However, the 
maximum observed in£91 should not be observed in our 
model. (The authors of£ 91) investigated films without a 
magnetic field. In fact, inasmuch as only the decreas
ing sections of the plot of r against 1f are stable, the 
first part in (33) will increase monotonically with the 
current on each stable section. From the point of view 
of generation of Ho, transitions from one branch to 
the other, referred to above, will be manifest in jumps 
of Ho at certain values of the current, with further 
increase of Ho up to total destruction of the supercon
ductivity. 

It would be of interest to perform similar experi
ments. 

In conclusion, the authors consider it their pleasant 
duty to thank G. M. Eliashberg and A. P. Kazantsev for 
useful discussions. 

APPENDIX 

1. Stability of Stationary Solutions of Eq. (20) 

For a small increment li, 77 2 = 11~ + 6, where 77 0 
satisfies Eq. (21), we get from (20) 

The numerator in the square brackets is positive if 
Tlo <TIC or Tlo > TIB, in other words, the upper and 
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lower solid branches in Fig. 1 are stable, and the 
central dashed branch is unstable. 

2. Stability of Stationary Solutions of Eq. (30) 

For a small increment 6 to the stationary solution 
1Jg, satisfying Eq. (31 ), we get 

. 1 [ 2T]o2~2J 8 1 ( J ) 2] 
6 =- v-r. 1- {T]o4 + ~2)2 27 :;jJ" IKP 6. 

Expressing the current in terms of 1Jo in accordance 
with (31 ), we obtain the stability condition in the form 

2~4[ 

3T]o2-2+ (T]o4+~2)2>0. 
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