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The role of "effective" electron collisions with long-wave phonons in the vicinity of the Bragg planes 
is considered for metals which can be described by the weak pseudopotential model. It is shown that 
the contribution of the "effective" collisions to the electric conductivity for wT >> 1 is of major im­
portance at comparatively low temperatures and frequencies and leads to a change in the frequency 
and temperature dependences of the electric conductivity. In. the case of static electric conductivity, 
the ''effective" electron-phonon collisions determine the temperature dependence of the resistance 
at low temperatures for not very pure metals, where the collisions between electrons and impurities 
are predominant. 

As is well known, the collisions of electrons with pho­
nons of small momentum provide for the static electric 
resistance of pure metals at low temperatures. The 
rapid decrease in the electric resistance with tempera­
ture (according to the T5 law) is explained first by the 
decrease in the number of phonons in the metal and, 
second, by the decrease in the effectiveness of the indi­
vidual collision. The low efficiency of collisions of elec­
trons with thermal phonons at low temperatures is con­
nected with the fact that each collision changes the ve­
locity of the electron slightly and, consequently, has 
little effect on the electric current. 

A similar situation holds for the electric conductiv­
ity in a high-frequency electric field. For field frequen­
cies wT >> 1, the electric conductivity is proportional 
to the effective frequency of collisions of the electrons 
with phonons11 1/ T = v, which falls off with temperature 
according to the law T5 in the temperature range liw 
<< T << 0 (6 is the Debye temperature). If the energy 
of the electromagnetic quantum exceeds the temperature 
spreading out of the Fermi surface (liw >> T), proc­
esses begin to dominate in which the electron, absorbing 
the electromagnetic quantum, emits a phonon. In these 
processes, the role of the temperature is played by the 
quantity liw and, as was shown by Gurzhi, [lJ the effec­
tive collision frequency is v a: w5 (for T << liw << 6). 

We emphasize once again that the dependences shown 
above follow from the assumed low efficiency of the in­
dividual collision of the electron with a long-wave pho­
non; in other words, it is assumed that the velocity of 
the electron is changed materially in momentum space 
over distances of the order of 6/s (s is the velocity of 
sound). This assumption may not be satisfied, however, 
for different special electron dispersion laws. In such 
cases, the results are valid only for such low tempera­
tures and frequencies for which the quantities T /vF 
and liw /vF are much smaller than those distances in 
p space over which the velocity of the electron changes 
appreciably. At the present time, there are researches 

llwe refer to that part of the electric conductivity which is con­
nected with volume collisions of the electrons. 

(see, for example, [2 - 4 J) in which the temperature de­
pendences of the static electric resistance have been de­
termined; these differ from T5 at not very low tempera­
tures. It will be shown below that for metals described 
by the weak pseudopotential method (see [5 J) the as­
sumption of the low efficiency of the collisions is not 
valid for all the electrons on the Fermi surface. 

We consider a metal the Fourier components of 
whose pseudopotential V g (g is the corresponding vec­
tor of the reciprocal lattice) satisfy the condition 
V g/EF << 1 and for which the Fermi surface intersects 
the Bragg planes (see the drawing). The pseudopotential 
of the lattice has a significant effect on the dispersion 
relation of the electrons only in the narrow layer of p 
space close to the Bragg plane, the width of which is of 
the order of gVg/EF (the shaded regions on the draw­
ing); therefore the velocity of the electrons with quasi­
momentum outside this layer differs little from the ve­
locity of the free electron. For the same Bragg plane, 
the component of the velocity normal to it is equal to 
zero. Therefore, a collision with a phonon which takes 
the electron from the shaded portion of the drawing 
strongly changes its velocity for an insignificant quasi­
momentum change (~v ~ VF for ~p ;:; gV g/ EF ). In 
other words, the collisions which bring the electron 
from the Bragg region (transition 1 - 2 on the draw­
ing) are "efficient," and the same, it seems, applies to 
the opposite transitions. Although only electrons from 
a narrow layer close to the Bragg plane can take part 
in the "effective" collisions, it will be shown below that 
such processes can give a decisive contribution to the 
high-frequency electrical conductivity. 

Intersection of the Fermi surface with a 
pair of Bragg planes. I -+ 2 and 3 -+ 4 are 
transitions for "effective" collisions, 3 -+ 3' 
is the reciprocal Ia ttice vector. 
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Collisions with a Umklapp2> (the transition 3 --- 4 in 
the drawing) are another type of collision with low­
momentum phonons that strongly change the electron 
velocity. We note that in order for such collisions to 
be "effective," the initial state of the electron should 
not lie in the shaded region. 

For the determination of the contribution of the afore­
mentioned collisions to the electrical conductivity of the 
metal, it is first necessary to calculate the matrix ele­
ment of the electron-phonon collision in the weak pseu­
dopotential model. 

1. THE MATRIX ELEMENT OF ELECTRON-PHONON 
INTERACTION 

In the fixed-ion approximation, the matrix element of 
the electron-phonon interaction is equal to [ 6 1 

Bpp,q, = ,E c;,,c,,,.'A,,,,,qa., 
(I"=P+g) 

A••••'· = ia.,e.,(p,- p)u1.,-.1 1>•-••~•H• a.,= (2/iQpoo.,)-'1•, 

(1) 

where App1q~ is the matrix element in the plane wave 

representation, cp, P + g are the expansion coefficients 
of the Bloch wave function in plane waves, eq~ is the 
polarization vector of the phonon, wq~ the frequency 
of the phonon with momentum q and polarization ~(we 
shall omit the index ~ in what follows), up the Fourier 
transform of the pseudopotential of a single ion, n the 
volume of the metal, and p its density. Far from the 
Bragg planes, the Bloch wave function differs slightly 
from a plane wave and in this case Bpp1q Rl A pp1q· For 
example, if the state p is located near one of the Bragg 
planes, then it is necessary to leave the two terms in 
the sum (1) which contain cpp and cp, p +g' where g is 
the corresponding vector of the reciprocal lattice. We 
shall not consider the regions of p space close to the 
interaction of several Bragg planes; such regions make 
a contribution to the conductivity of higher order of 
smallness in the parameter V g/EF. The quantities Cpp 
and cp, p + g are easily computed from perturbation 
theory (by using the secular equation): 

c,, = {2(1 +x' -'{x' +x')}-''•, X= g(g/2- PJ.) 
2mV1 ' 

c,, •H =- signx{2(1 + x' +1x' +x,)}-''•, 

where p 1 is the quasimomentum component perpendi­
cular to the Bragg plane. 

Let us consider in more detail the case of interac­
tion of electrons with phonons of low momentum 
q << PF, a case that is important for what follows. In 
this case, Pi - p Rl g and the Fourier transform of the 
pseudopotential u 1 g + q 1 can be expanded in powers of 
of q near this value of the argument: 

du, g 
UIIHI = Ug + --q +, .. 

dp g 

As is known from the theory of the pseudopotential, [s l 

2lThe "expanded band" scheme is used. By a collision with Um­
klapp, we mean a collision with nonconservation of quasimomentum. 
In the "reduced band" scheme, some of such collisions (for example, 
the transition 3--> 4 in the drawing) must be regarded as inter band 
transitions without Umklapp. 

the Fourier transform up is a rapidly decaying func­

tion of p:· llo Rl EF, ug = Vgi consequently, ug/Uo 
Rl Vg/EF << 1. Therefore, for q/pF >> Vg/EF terms 
containing ug can be omitted in (1) in comparison with 

the term containing u 0 • In the general case, it is im­
possible,to speak of terms containing the derivative 
dug/dp, since in real situations, the value of this deriv­
ative changes in the limits Vg/g .$ dug/dp .$ EF/g. 

Thus, for the matrix element of electron-phonon in­
teraction, we have for PFV g/EF << q << PF: 

A=A'+A", 
A,~,.= ia.(e.q)u,.S,_P>+•• (2) 

n . (e.g) du, 
A,,,.= za.---d (qg).S,_,,+<+•• g + 0, (3) 

g p 

and correspondingly, B = BI + BII. 
We note that the 2robability of collisions with change­

over, contained in BI, is not small only near the Bragg 
planes. 

For simplicity, we assume that the expressions (2) 
and (3) are valid even for q Rl PF, which, as it is not 
difficult to show, does not significantly affect the results 
given below. 

2. HIGH-FREQUENCY ELECTRICAL CONDUCTIVITY 
OF METALS 

In this section, we shall discuss the high-frequency 
electrical conductivity of metals described by the weak 
pseudopotential model, the Fermi surface of which in­
tersects the Bragg plane. Such a situation occurs for 
many polyvalent metals. 

For simplicity, we limit ourselves to the considera­
tion of metals with a cubic lattice, the electrical con­
ductivity of which is isotropic. Generalization to the 
anisotropic case does not present any difficulty. By 
solving the Gurzhi kinetic equation by means of the 
method of successive approximations, [l, 7 J it is not dif­
ficult to show that the electrical conductivity of the 
metal, which is associated with electron-phonon colli­
sions in the range of frequencies 1/T << w << Wt, 
where wt is the threshold frequency of the internal 
photoeffect, is determined by the expression 

C1 = 3:.~e~. E (v,,- v,)' lB •• ,. I'[ (n.n,,N.- n,n,,N.) 

x.S(e,,- e, -lloo. -lioo)+ (n,n,,N.- n,n.,N.)I>(e.,- e, + lioo. -lioo) ], 
n,=1-n., N,=1+N,, (4) 

where Vp is the velocity of the electron, np and Nq are 
the equilibrium distribution functions of electrons and 
phonons, Ep is the energy of the electron. The quanti-
ties Ep and Vp in the weak pseudopotential model can 
be computed by perturbation theory (by using the secu­
lar equation): 

p' --
8p = 2,; + V ,x(1-'{x-• +1), X= g(g/2- P.L) 

2mV, ' 

'{x-:+ 1) · 
p g ( v.=-+- 1 
m 2m 

In the following, we shall use the isotropic Debye 
model for the phonons. 
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We shall first determine a0 -the electrical conduc­
tivity without account of the contribution of the Bragg 
regions of p space and without account of changeovers 
(i.e., without the term BII in the matrix element). For 
this purpose, we can use the free electron model. We 
introduce the effective collision frequency of the elec­
tron, defining it by the equality 

a= e'Nv I mw', (5) 

where N is the density of valence electrons. Simple 
calculation gives 

( T w ) qD5Wn 2m 
lv, = 'I''P 8' roD ; '\' = 3(2n)' psli'N' 

• (6) 
cp(x,y)= J fll(x,y,t)t'dt, 

0 

2 t/y-1 t/y+1 
lll(x, y, t) = e'l" -1 +I e<'-u)l• -1- e<•+u)l• -1, 

where qD is the limiting momentum of the phonons, 
wn the De bye frequency. This expression, with accu­
racy to within a coefficient, agrees with the result from 
Cl J. The asymptotes of the dependence of the effective 
frequency of collisions on w and T for w << wn, 
T << 6 have the form 

{ 
248y(T/8)' for T » liw 

'Yo= 1 / • f T h -y(ro roD) or ~ w. 
30 

(7) 

We now determine the contribution to the electrical 
conductivity of the "effective" collisions, i.e., colli­
sions with a large change in the velocity of the electron. 
The contribution of these processes divides into two 
parts: 0"! and <TII• corresponding to the parts of the ma-
trix elements BI and BIT. Thus the total electrical con­
ductivity is equal to a = 0"0 + ai + <TU· 

The electrical conductivity a:I is determined by proc­
esses for which the initial or final state of the electron 
lies in the Bragg region. Actually, the changeover-free 
collision is effective if the electron before or after the 
collisions is in the shaded region on the drawing; in 
this same case, the probability of collision with change­
over is not small (it is determined by the matrix ele­
ment BI. Calculation of <TI is materially simplified if 
one of the following conditions is satisfied: T /8 
>>Vg/EF or w/wn >>Vg/EF· In this case, we obtain 

ngV,m { T w) v/=v--,-'t}Jr -,-, 
2qD PF e roD 

I 

\j).(x, y) = J fll(x, y, t)t' dt, (8) 
0 

where ng is the number of physically equivalent Bragg 
planes corresponding to a given I g 1. For w < wn and 
T << 8, we have, for the quantity vf, 

l22.7y g~,m {.!._)' for T » hw, 
qD PF e 

Vrg= 

ngV,m { w )' y--- for T ~ hw. 
24qD2PF WD 

(9) 

The fundamental contribution to the effective frequen­
vg 
n 

v , = yg'(du,/dp)' { T w) 
II 3 2 'i'II fit - ' 

qnUo o ffiD 

I 

'i'u(x, Y) = J fll(x, y, t)t' dt. (10) 
0 

For T << 8 and w << wn the asymptotes of the col­
g 

lision frequency vn have the form 

!
Sn'yg'(du,/dp)' (_!'_)' for T » hw 

45qDuo' E) 
Vn1 = 

yg'(du,/dp)' {~)' for T ~ liw. 
60qDUo' (jjD 

(11) 

The results given are not difficult to explain from 
intuitive physical considerations. For definiteness, we 
limit ourselves to the case T >> liw; moreover, we 
shall consider that the temperature momentum of the 
phonons is much greater than the width of the Bragg re­
gion. Under such conditions, the effective collision fre­
quency for electrons from the Bragg region differs from 
the usual value v0 ~ y(T/8)5 by the absence of the fac­
tor (T/8)2, which is connected with the low effective­
ness of the single collisions. This refers both to the 
Umklapp-free transitions from the Bragg region, and 
also to the collisions which are accompanied by Um­
klapp. Moreover, it is clear that one must add the fac­
tor SB/SF to the expression for VI, where SF is the 
area of the Fermi surface and SB ~ PFVg/EF is the 
area of that part of it which falls in the Bragg region. 
Finally, we get III ~ y(Vg/EF)(T/8)3 , which agrees with 

(9) in temperature dependence and order of magnitude. 
The effective frequency vu is determined by the col­

lisions with changeover of electrons with quasimomenta 
outside the Bragg region. As is seen from the drawing, 
the Umklapp processes are possible only from those 
states on the Fermi surface which are found at dis­
tances from the Bragg plane that are no larger than the 
temperature momentum of the phonon q. Therefore, 
the role of the area SB in the given case will be played 
by the quantity qpF ~ PF(T/8) and as a result, we get 
vn ~ y(T/8)4 • 

It is seen from a comparison of Eqs. (9), (11), and 
(7) that at low temperatures and frequencies (T << 8 
and w << wn) the "effective" collisions make the prin­
cipal contribution to the electrical conductivity of the 
metal that is associated with volume collisions. For 
example, for T/8, w/wn ~ Vg/EF, the ratio of the ef-

fective frequencies III /v0 is of the order of E F/V gY 

We recall that "effective" collisions of the electrons 
are possible only with phonons whose momentum 
q ~ PF(V giEF~· Therefore, for T /8 and w /wn 
<< Vg/EF, the number of such collisions is negligible 

and the total electrical conductivity is determined by 
Eq. (5) with II = 110 • 

The relation of the effective collision frequencies 
vI and v n depends on the value of the ratio 
(dug/dp)2/(u 0 /g)2 • For different metals the value of this 

quantity varies in the range from (Vg/EF )2 to unity. 

We now discuss the possibility of the experimental 
discovery of the indicated dependences of the collision 
frequency on w and T. As has already been pointed out, 
the contribution of the "effective" collisions is most 

3lin the comparison of the quantities VI and vn with it should be 
kept in mind that for most polyvalent metals, ng "" I 0. 
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significant at low temperatures T << e and frequencies 
w << wo. However, for sufficiently low frequencies, 
Eq. (5) for the electrical conductivity is invalid as the 
result of the anomalous skin effect. It was shown in the 
work of Motulevich [8 ] that the corrections to the sur­
face impedance associated with the anomaly are small 
ifthequantity %(vF/c)[l +(n/x)2) 112 [1 +(v/w)2r 112 

(n and x are the real and imaginary parts of the index 
of refraction) is smaller than or of the order of unity. 
For w >> v, this condition leads to the following limi­
tation on the frequency of the electromagnetic field: 
w ~1018 Hz. 

Up to now we have considered the case of compara­
tively high frequencies of the electromagnetic field, 
for which WT >> 1. We shall show that the dependences 
of the frequency of the electron-phonon collisions on the 
temperature, obtained above, are also valid for the 
static electrical conductivity if collisions of electrons 
with impurities are predominant. In this case, the 
small contribution to the distribution function of the 
electrons, which is associated with electron-phonon 
collisions, can be determined by iteration of the kinetic 
equation. 

If we assume that each collision of an electron with 
an impurity is "effective" (i.e., the mean momentum 
transferred to the electron in the collision is of the or­
der of PF), then we get for the resistivity p = 1/a, 

p = m(v,, + v,.) I e'N. 

In this formula, "ei is the frequency of collisions of 

electrons with impurities, and the frequency of the elec­
tron-phonon collisions 11 ep(T) = 110 + "I + "'I, where the 
quantities 110 , "I and "IT are determined by Eqs. (6), 
( 8), and (10) in their temperature dependence and their 
order of magnitude; here one must set w = 0 (exact 
agreement is obtained if the approximation of the relax­
ation time is applicable for collisions of electrons with 
impurities). 

The author expresses his deep gratitude to R. N. 
Gurzhi for direction of the given work. 
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