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Integration of the kinetic equation with a nonlocal collision integral leads to a system of hydrody­
namic equations, including the equation for the transport of the polarization of rotational angular 
momenta of molecules. It is shown that the latter has independent significance in strongly non­
stationary processes, and also under stationary conditions if a magnetic field is applied the direc­
tion of which does not coincide with the direction of rotation of the gas as a whole. Phenomena 
analogous to the Einstein-de Haas and the Barnett effects are discussed on the basis of the system 
of equations obtained in this paper. 

1. Our object is to derive the hydrodynamic equations 
(HE) for molecular gases from the kinetic equation (KE). 

Within the framework of the kinetic theory of gases 
the usual HE system is a macroscopic expression of the 
laws of conservation of the number of particles, of mo­
mentum and of energy, i.e., of the conservation laws 
which hold for each collision. However, there exists 
still another conserved quantity- the total moment of 
momentum. In the usual HE system (cf., for example,Ul) 
the corresponding transport equation is absent. In fact 
this corresponds to an explicit or an implicit assump­
tion that the motion of the particles is completely des­
cribed by the translational degrees of freedom. In this 
case the law of conservation of angular momentum is a 
direct consequence of the law of conservation of mo­
mentum. However, in making the transition to a gas 
with rotational degrees of freedom the total angular 
momentum- the sum of the rotational and the orbital 
angular momenta of the molecules- is an independent 
additive integral of the motion. In the general case this 
must lead to a new independent equation in the HE sys­
tem which describes the transport of angular momen­
tum. 

The problem of the macroscopic equation for the 
transfer of angular momentum has been raised by a 
number of authors ( cf., L2 J), but they did not succeed in 
obtaining an equation which would describe a natural, 
from the physical point of view, exchange between the 
rotational and the orbital parts of the angular momen­
tum of the gas. 

In hydrodynamics of liquids this problem is solved 
phenomenologicallyl3 ' 4 J, an equation for the transport 
of angular momentum is introduced formally into the 
HE system and it is shown that a connection between the 
internal rotation and the translational motion exists 
only in the case if one introduces the antisymmetric 
part of the viscous stress tensor the explicit form of 
which is obtained from the principle of increase of en­
tropy. 

In the present paper it is shown that the complete HE 
system can be obtained from the KE only by taking into 
account the nonlocality of the collision integral. An 
analysis of the HE system that we have constructed 
taken together with an estimate of the kinetic coeffi­
cients shows that under ordinary conditions the rota-

tional angular momentum rapidly relaxes to its thermo­
dynamic equilibrium value. At the same time the equa­
tion for the transport of angular momentum loses its 
independence and the HE system assumes its usual form. 
As a result the complete HE system plays a role prim­
arily in describing strongly nonstationary processes. 
Nevertheless, in the presence of an external field which 
acts directly on the rotational degrees of freedom the 
equation for the transport of angular momentum retains 
its validity even under stationary conditions and this 
leads to a number of interesting phenomena. 

2. For the sake of definiteness we consider a 
diatomic gas in a constant magnetic field B, and we take 
the rotational degrees of freedom into account in a 
classical manner. 

The variation with time of the distribution function f 
for a diatomic gas is described by the kinetic equationL5 J 

of a • - + V (vf) + -(Mf) = -1. at aM 
. (2.1) 

Here J is the collision integral, p = mv and M are the 
momentum and the rotational angular momentum of the 
particles, M = I.L x B. 

For a paramagnetic molecule the magnetic moment 
of the molecule I.L depends on the discrete variable a 
characterizing the possible components of the spin 
along the direction of the angular momentum. For ex­
ample, for oxygen 

f.'=y(a)M, y(±1)=2Jlo/M, y(0)=-2Jloli/M" (2.2) 

(J.l.o is the Bohr magneton). The distribution function is 
normalized by 

(/)=n (2.3) 

(n is the particle number density). Here and below we 
utilize the following notation: 

(A/) = .E J dp dM Aj, if = (Af)/n, 

V=v, u=v-V, 

dif 0.4 
--;u=-at+(VV)A', V(A'/) """'(A'V/). (2.4) 

An element of volume in the rotational angular momen­
tum space for a diatomic gas is equal to 

dM = MdMd cos a MdcpM. (2.5) 

1116 
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An equation for the transport of a quantity A is obtained 
from the kinetic equation by multiplying it by this quan­
tity and by integrating over all the variables except time 
and space coordinates. With the aid of the equation of 
continuity 

an/at+ V(nV) =0 (2.6) 

the equation for the transport of the quantity A is brought 
to the form 

d.A ( aA ) n- = -[~tB1f - V (uA'/)- (A/) 
dt aM · 

(2.7)* 

In (2. 7) the first term on the right hand side is the 
effect of the magnetic field which differs from zero only 
if A depends on the rotational angular momentum. The 
second term is the flux of the quantity A in the system 
of coordinates in which the given element of volume of 
gas is at rest. The last term (AJ) describes the change 
in the quantity A due to collisions which is summed over 
all the molecules contained within a unit volume. 

The infinite system of differential equations (2. 7) 
constructed for the complete system A of functions of p 
and M, is equivalent to the integro-differential kinetic 
equation (2.1). In this system a distinctive role is played 
by equations in which the quantity A is one of the addi­
tive integrals of the motion, i.e., momentum, total angu­
lar momentum of the molecule, and energy: 

p' M' 
A,= p, A,= M+[rp], A, =E=2,;+ 2I -,..B. (2.8) 

(In the presence of a magnetic field the total angular mo­
mentum remains an integral of the motion in a collision 
since during a collision time the change in it due to 
precession is negligibly small and this change is com­
pletely taken into account by the left hand side of the 
kinetic equation.) 

In the kinetic theory of gases the collision integral 
is usually chosen in the local form due to Boltzmann J B· 
The following equations hold for the Boltzmann integral 

(p/s)=O, (Eis)=O, (2.9) 

which physically mean that the momentum and the en­
ergy per unit volume of the gas do not change as a re­
sult of collisions. On the other hand, the quantity (MJs) 
differs from zero, since in a single collision the sum 
of the rotational angular momenta of the colliding mole­
cules is not conserved, since there exists no restriction 
on an exchange between their rotational and orbital 
angular momenta. But the Boltzmann integral is a local 
operator in the sense that its value at the point r is 
determined by the value of the distribution function at 
the same point of coordinate space. Therefore, from 
the first of equations (2.9) it follows immediately that 

([rp]ls) = [r, (pis)] =0. (2.10} 

Thus, for the Boltzmann integral the quantity 
((M + r x p)J a> differs from zero. From this it be­
comes clear that in order to take into account the fact 
that the quantity which is conserved in a collision is not 
the orbital angular momentum (as in (2.10}}, but only 
the total angular momentum of the colliding molecules, 

one should give up the approximate representation of 
the collision integral in local form. 

The nonlocality of the collision integral is associated 
in the first instance with the fact that the range of inter­
action between the molecules has although a small 
(compared to the mean free path A), but nevertheless 
finite value 11. The nonpoint nature of the interaction is 
assumed already in J B which is seen particularly 
clearly when the probability of collisions is expressed 
in terms of the impact parameter. But the collision 
integral assumes the form Js only in the first non­
vanishing approximation with respect to ~t/A. In order 
to take into account in transport phenomena corrections 
in terms of the ratio ~t/A the collision integral should 
be regarded as a nonlocal operator. This is well known 
from the theory of dense gases ( cf., the papers by 
EnskogLsJ and by BogolyubovL71 ). 

In the case of a finite range of interaction the quan­
tity which is strictly conserved in a collision is the sum 
of the additive integral A over all the molecules of the 
gas, i.e., 

J dr(A/) = 0. (2.11) 

The corresponding quantity (AJ) per unit volume may 
be different from zero due to collisions which occur at 
the boundary of this volume. According to (2.11) one 
can only assert that the integrand in (2.11) is a diver­
gence of a certain flux which is directly related to the 
collisions 

(AI)=-Va. (2.12) 

For rarified gases the flux a is much smaller than the 
flux (uAf) ( cf., (2. 7)) and the former should be taken 
into account only if this leads, as in our case, to quali­
tatively new phenomena. 

3. We substitute into (2. 7) in succession the integrals 
of the motion (2.8): 

d 
mndt Vi=- V,(mu,uJ)- (p/), 

d- -
ndt(M + m[r'V]) 1 = n[~tB] 1 

- V,{(u;MJ) + (u.[r', mu]J)- ((M +[rp])/)}, 

dE n'"'dt' =- V,(u,E/)- (EI). 
(3.1) 

In the equation for the transport of the total angular mo­
mentum (the second of equations (3.1)) it has been taken 
into account that in accordance with the derivation of 
(2.7) the operator V does not operate on the quantity 
r x p. The terms of this equation associated with the 
orbital angular momentum of the molecules can be 
eliminated with the aid of the equation for the transport 
of momentum (the first of equations (3.1)). As a result 
we obtain the equation for the transport of rotational 
angular momentum 

d -
ndt.MJ = n[~tB]J- V,(u.MJ) -(M/). 

In accordance with (2.12) we have 

(p/) = - V ,au, 
((M+ [rp])l>=-V,b,1, 

(E/) = - V ,c,. 

(3.2) 

(3.3) 
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With the aid of the first two equations in (3.3) we can 
express a term in equation (3.2) in terms of the tensors 
a and b: 

(3.4) 

The last equation in the system (3.1)-the equation 
for the transport of energy- can be put into a different 
form by transforming it into an equation for the trans­
port of heat, or more accurately, of entropy. For the 
local value of the entropy of a nonequilibrium system 
such as a gas which performs a hydrodynamic, i.e., a 
large scale motion, it is customary to choose a quan­
tity which in its form coincides with the entropy of an 
equilibrium system. In the Appendix it is shown that the 
entropy S defined in this manner referred to a single 
molecule satisfies the equation 

dS 1 { dE dV dM} dn n-=- n--mnV--(QM-QB)- --
dt T dt dt dt dt . 

(3. 5) 

Here and further we shall use the special notation: 

QM = '/,M/1, OB = (r.tM I 2/T)B. (3.6) 

We shall call the first quantity 0 M the average fre­
quency or the polarization of the rotation of the mole­
cule. The factor 3/2 is associated with the specific 
form of the element of volume dM for a diatomic mole­
cule ( cf., (2. 5)). The quantity 0 8 is the effective rate 
of precession of the rotational angular momentum in a 
magnetic field. 

Substituting equations (3.1)-(3.4) into expression 
(3.5) we obtain after simple rearrangements of terms 
the general equation for the transport of heat: 

n ~~ = ~ {- V,Q, + O';;V,V; + ~,;VJ2M;- 2(QM- f!B)cr<'l}. (3. 7) 

The new quantities appearing in this equation are de­
fined by the following formulas 

cr,1 = -(mu,uj) + a,1 + pb,1, p .= nT, 

P•1=-(u,Mj) + b11', (3.8) 
Q,= (u.J;j)- c,+ O';;V; + p;;(QM- QB)I- pV;. 

The pseudovector a' 1 > in accordance with (3.4) and (3.8) 
is a dual vector to the antisymmetric part of the viscous 
stress tensor aij· 

With the aid of notations (3.8) the equations for the 
transport of momentum and of rotational angular mo­
mentum can be written in the form 

d 
mndt V1=- V1p+ V,cr,1, 

d- - (1) 
ndtM; = n[r.tB] + V,~ij + 2cr; . (3.9) 

These equations together with the equation of continuity 
(2.6) and the equation for the transport of heat (3.7) 
form a complete HE system. This system is a closed 
system if the fluxes of a, {3 and Q can be considered as 
known as soon as the values of n, T, V and Mare given 
at each point of the gas. The latter quantities completely 
determine the state of the gas only in the case of a large 
scale hydrodynamic motion, when the deviation from 
thermal equilibrium is known to be small. In the next 
section we shall express the dissipative fluxes in terms 

of the local characteristics of the gas, assuming that 
the conditions for the applicability of a hydrodynamic 
treatment are satisfied. 

In generalizing to the case of a gas of polyatomic 
molecules the HE system retains its form and only the 
relations (3.6) are altered: 

f!M=3M/(IA+IB+Ic), OB=B(r.tM)/(IA+IB+Ia)T. (3.6') 

Here lA, IB, 1c are the principal moments of inertia. 
4. In the complete HE system the dissipative proces­

ses are described by the tensor a, the pseudotensor {3 
and the vector Q. These quantities must vanish when the 
gas is in thermal equilibrium. For small deviations 
from thermal equilibrium the fluxes of a, {3 and Q are 
linear functions of parameters characterizing the de­
gree of deviation of the state of the gas from the equili­
brium state. Such parameters, in the first instance, are 
the gradients of the velocity ·~\ Vj and of the tempera­
ture V'T. An analogous obvious characteristic of the 
deviation from equilibrium is the inhomogeneity of the 
average rotational angular momentum, i.e., Y'iSlMj· 

Moreover, one should take into account that in the 
case of thermal equilibrium in a rotating gas the angu­
lar velocity of rotation of the gas 

(4.1) 

uniquely determines the value of the average rotational 
angular momentum or, what is the same, the value of 
OM (cf., (A.3) and (A.8) in the Appendix). Therefore in 
the absence of thermal equilibrium a new macroscopic 
quantity arises-the difference on between the equili­
brium and the actual values of the frequency of rotation 
of the molecules OM which determines an additional 
independent dissipation channel. 

The linear relation between the dissipative fluxes 
of a, {3 and Q and the parameters of the deviation from 
thermal equilibrium V'V, V' Sl M• V'T and on is of a com­
plicated tensor nature if the properties of the gas are 
anisotropic. For example, in the presence of a magnetic 
field heat conductivity is, generally speaking, a second 
rank tensor, while viscosity is a fourth rank tensorlsJ. 
In the present paper we will not consider such effects. 
For an isotropic medium the relationship between the 
dissipative fluxes and the parameters of deviation from 
equilibrium reduces to a simple proportionality between 
the irreducible parts of these quantities. 

We decompose the fluxes of a and {3 into irreducible 
parts: 

(4.2) 

Here a< 0 > is a scalar which determines the spherical 
part of the tensor aij;a' 1 > is a pseudovector, dual to the 
anti symmetric part of the tensor aij; aij> is the irreduci­
ble tensor of the second rank: 

The decomposition of the pseudotensor {3 ij is of an 
analogous nature. 

(4.3) 

The irreducible characteristics of the deviation of 
the state of the gas from the equilibrium state are the 
scalar div V, the pseudoscalar div OM, the vectors V'T 
and curl OM, the pseudovector oSl, the tensor {vivj} 
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and the pseudotensor { v in Mj} (the latter quantities are 
constructed in accordance with the psescription (4.3)). 
We note that the pseudovector dual to the antisymmetric 
part of the tensor ViVj, i.e. (4.1), is absent from the 
above sequence since this expression does not have to 
vanish in the state of thermal equilibrium. Thus, from 
considerations of symmetry we obtain 

o<'>=bdivV, o<'>='/a61l0, o,~.,=2n{V,VJ}, 

tJ<'l = lio div n ... , jl<'> = fJ, rot OM, 

Q=-xVT. 

00 (4.4) 
fi•J = 21\.{V,Q .. ;}, 

In principle, on the right hand side of the expression 
for the heat flux Q a term could appear proportional to 
curl n M, while on the right hand side of the expression 
for 13< 1 > a term could appear containing VT. However, 
one can show that the corresponding kinetic coefficients 
are equal to zero, at least in the case when the probabil­
ity of collisions is an even function of the rotational 
angular momenta. 

The principal contributions to the fluxes of a, f3 and 
Q are made by the usual terms of the form (uAf) which 
are calculated by the well known methods of kinetic 
theory with the collision integral in local form. From 
these calculations we obtain the majority of the kinetic 
coefficients which in order of magnitude are equal to: 

'IJ =pI 'Vv, ~ ~ pI 'VM, ')( ~ 11 I m, Pn ~ [y, (4.5) 

(vy and liM are the inverse relaxation times for the 
translational and the rotational degrees of freedom). 

The fluxes a, b' and c (cf., (3.3), (3.8)) arise only 
when the nonlocality of the collision integral is taken 
into account and give, benerally speaking, small correc­
tions to the kinetic coefficients (4.5). These corrections 
are proportional to the ratio ( <t/~f. (At first sight it 
might appear that the pseudotensor b' is not small since, 
in accordance with the definition (3.8), this tensor con­
tains the spatial coordinate x explicitly. However this 
explicit dependence on x must be compensated iden­
tically by the tensor b (without a prime). This is con­
nected with the fact that the form of the HE system (3.9) 
must be invariant with respect to the choice of the origin 
of coordinates, and, consequently, all the quantities (in 
particular, f3ij) must not depend explicitly on the spatial 
coordinates.) Thus, we can neglect the fluxes a, b' and 
c each time when we are dealing with corrections to the 
usual dissipative fluxes. An exception is made by the 
antisymmetric part of the flux ~j (or o< 1>), for which 
there is no analogue in the usual tensor for the trans­
port of momentum (UiPjf). 

5. In order to obtain the flux a< 1 > one must evaluate 
(cf., (3.3), (3.4)) the quantity (pJ). For the evaluation 
of the latter quantity one can utilize the method of 
Enskog who calculated the corrections to the kinetic 
coefficients for dense gasesl6 J, or one can construct a 
generalized method of moments in which the spatial co­
ordinate is treated on the same basis as v and M. But 
one can avoid these complicated calculations and reduce 
the problem to the customary methods of the theory of 
rarified gases if one utilizes the relation (3.4) written 
in the form 

-2o<'> = (MI). (5.1) 

Here we have neglected the quantity vb'. Indeed, the 
pseudotensor b' is in its properties completely analogous 
to the pseudotensor f3 and, consequently, is constructed 
from first derivatives of OM, while Vb' is constructed of 
second derivatives of OM. But taking into account in the 
viscosity tensor of the second derivatives of the average 
velocity of rotation of the molecules takes us far beyond 
the framework of applicability of HE. 

We note that although the right hand side of (5.1) is 
different from zero already when the collision integral 
is in local form, the quantity (MJ) itself contains a 
small factor-the moment of inertia !-which is propor­
tional to <t2 (cf., below (5.5)). On the left hand side the 
corresponding smallness arises as a result of the fact 
that (pJ) differs from zero only when the nonlocal 
structure of the collision integral is taken into account. 

We evaluate the quantity (MJ) in the one-moment 
approximation. We assume that the state of the gas is 
close to the state of thermal equilibrium: 

t=/o(1+x>. x~1, 

f, = exp {~[F-E+ V,p+O,(M+[rp])}. (5.2) 

In order to describe the situation in which the rotational 
angular momentum is not in equilibrium with the orbital 
angular momentum we assume that 

x=xMIT, (5.3) 

where x is a small constant pseudovector. In the case 
of small deviations from equilibrium the collision in­
tegral can be regarded as a linear integral operator: 

I {/o} = 0, I{!}= j,!.'Jx, 

while the diagonal matrix elements 
'Vn= (cpJ,Qcpn) 

(5.4) 

have, roughly speaking, the meaning of inverse relaxa­
tion times of the quantities Cf'n if the latter are normal­
ized to unity: 

(cpJoCf'n•) = 6.,;. 

Substituting (5.3) into (5.4) we obtain 

1 A 2 
(M/) = T(M;j,QM,)x, = 3 nivMl(;. (5. 5) 

The vector x can be expressed in terms of the macro­
scopic characteristics of the gas, and this is most 
simply done by noting that the distribution (5.2), (5.3) 
coincides including the notation with the distribution 
(A.1). As a result of this we have 

(5.6) 

Comparing (5.5) and (5.6) with the expressions (4.4) 
and (5.1) which determine the quantity a< 1 > we obtain 

o<•> = 1/266Q, 6Q = Qv- QM- OB, 6 = 'l,nlv,.. (5. 7) 

Thus, the antisymmetric part of the viscous stress 
tensor, i.e. , a< 1 >, has a form which is in complete agree­
ment with the prediction on the basis of general con­
siderations and describes a peculiar dissipative process 
associated with the exchange of angular momentum be­
tween the translational and the rotational degrees of 
freedom of the molecules. 

We emphasize that the pseudovector a< 1 > plays a 
double role. On the one hand it enters the equation for 
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the transport of momentum (3.9) (cf., (4.2)) characteriz­
ing the effect of the internal rotation of the molecules 
on the circulation of the gas. This effect is a very weak 
one. The ratio of the coefficient ~ to the coefficient of 
first viscosity is in order of magnitude equal to 

(5.8) 

From this point of view the ratio (5.8) appears as a 
manifestation of the smallness of nonlocal effects in a 
rarified gas, i.e., the smallness of the quantity (pJ). 
On the other hand, in the equation for the transport of 
rotational angular momentum (3.9) the quantity a<1> de­
termines the effect of the translational degrees of free­
dom on the rotational degrees of freedom. This effect 
is of decisive significance. Indeed, when OM deviates 
from its thermodynamic equilibrium value it can be 
easily seen that in the equations for the transport of 
angular momentum the dissipative terms 'i1{3 and a< 1> 

are in the ratio of 

(5.9) 

Here L is a length over which OM changes in a signifi­
cant manner. The ratio (5.9) is small since the inequal­
ity 

'A/L~1 (5.10) 

is a necessary condition for the applicability of hydro­
dynamic considerations. 

6. Thus, the complete HE system for a diatomic gas 
in a constant magnetic field has the form (cf., (2.6), 
(3.7), (3.9), (4.4)) 

an/at+ V(Vn) =0, (I) 

mn dV =- gradp + T]~ V + ( ~ +_!_TJ) graddiv V 
dt 3 

+ ~ srot(Q,-Qs-Qv), (II) 

dQM 3 
dt = [n,ns] + 2/n { (~, + ~.) ~g, 

+(~o -fl, + 1/allz)graddiv QM} -VM(QM- QB- Qv), (III) 

ds 1 { 1 ( av1 av, 2 ) • n-=- x~T+-TJ --+----11,1divV +~(divV)' 
dt T 2 a:c, a:c1 3 

f ( aQMI aQMi 2 ) 2 

+ 21\z a;:+ a;;-- 311'; div Q" + II• (rot QM)' 

+llo(divQ")'+Wl"-Qs-Qv)'}· (IV) 

We note first of all that the kinetic coefficients f3 n and ~ 
(just as TJ, {;, K) are essentially positive quantities 
within the framework of kinetic theory. Therefore, the 
entropy of the gas in accordance with (IV) can only grow 
with time as it ought to. 

Assume that there is no magnetic field present. In 
order to understand how within the framework of the 
system IV there occurs a transfer of angular momen­
tum between the rotational and the translational degrees 
of freedom of the gas we consider that the following 
model problem. 

We assume that at the initial instant we are given a 
perturbation of vortex type 

div v = o, nv ='/,rot v =<pQ,sinkr 1 r, 
QM = 'ljlQ,sinkr/r, k'A~1. (6.1) 

(Such a formulation of the problem enables us to avoid 
the solution with boundary conditions on the walls of the 
vessel in which the gas is placed.) We neglect nonlinear 
effects (i.e., the difference between dA/dt and aA/at, 
and also, in accordance with (5.9), the dissipative proc­
esses associated with the kinetic coefficients f3n· The 
HE equations (II) and (III) for the given problem can be 
written in the form 

anv I at = Vv'A'~Qv- 'VMtt2~ (QM- nv)' 

aQM I at= -vM(QM- nv), a'= 2/ I 3m. 
(6.2) 

In order to obtain the first of these equations we took 
the curl of both sides of equation (II) and utilized the 
explicit form for the kinetic coefficients TJ and ~ (4.5), 
(5.7). 

The form of the perturbation (6.1) is especially 
chosen so that the solution of the system (6.2) will re­
duce to the determination of the time dependence of the 
quantities cp and lJi: 

<p(t) = cp(O)e-'' + (ak)'['¢(0)- <p(O)] (e-''- e-'"'), (6.3) 

'ljl(t)='¢(0) e-'M'+{<p(O)+ (ak)'['¢(0)- <p(O) ]}(e-'1 - e-'M'),v = vv('Ak)'. 

Evidently the quantity v-1 is the usual characteristic 
damping time due to the first viscosity. If t is large 
compared to the relaxation time for the rotational angu­
lar momentum vM:, then expressions (6.3) assume the 
form 

<p(t) = '¢(t) = {<p(O) + (ak)'['¢(0) - <p(O)]}e-''. (6.4) 

We see that during a time of the order of vM the 
vortex comes to a state of local equilibrium, so that 
l'lv = OM. At the same time, when at the initial instant 
the rotating gas had no polarization of the rotational 
angular momentum lji(O) = 0, after local equilibrium has 
been established (but for t « v-1) the angular velocity 
of the gas turns out to be altered by a very small 
amount of the order of ( ak) 2 where L = k- 1 is the dimen­
sion of the vortex. Conversely, if at the initial moment 
the gas was not rotating, while the polarization ( crea­
ted, for example, by an inhomogeneous magnetic field 
which is switched off at time t = 0) differs from zero in 
a restricted region of space (of size L), then after a 
time of the order of vM a very slow rotation of the gas 
arises with an angular velocity proportional to ( a/L) 2 • 

It is easy to understand the reason for the small influ­
ence that the polarization of the rotational angular mo­
menta of the molecules has on the angular velocity of 
rotation of the gas: the moment of inertia of the vortex 
is of order of magnitude mL 5 , while the total moment 
of inertia of the molecules is ma2L3 • Therefore, in the 
case of equilibrium (Ov = 0 Ml the ratio of the angular 
momentum of translational motion to the total angular 
momentum of rotational motion of the molecules is equal 
to (L/a) 2 , i.e., it is very great if the vortex has macro­
scopic dimensions. 

We note that if we had attempted to solve the problem 
of the transfer of angular momentum from the transla­
tional degrees of freedom to the rotational ones without 
taking into account the finite size of the vortex, i.e., on 
the assumption that the angular velocity Ov does not 
depend on the spatial coordinates, then we would at once 
have obtained from (6.2) that Ov = const, OM 

-vMt -vw = OM(O)e + Ov(l- e ), i.e., the rotation of 
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the gas as a whole is completely independent of the state 
of internal motion! It is clear that this fact is associa­
ted with the condition for the independence of Oy from 
the coordinates being physically equivalent to the 
assumption of a vortex of infinitely large size. 

Thus, the terms of HE proportional to the kinetic 
coefficient ~ enable one to trace the dynamics of thE 
transition process from the state in which the angular 
velocity of translational motion Oy and the polarization 
of the rotational angular momentum OM are specified 
independently, to the local equilibrium state in which 

OM =r= Ov = 'I, rot V. (6.5) 

However, for the majority of classical hydrodynamic 
problems the characteristic times are great compared 
to the time for the establishment of local equilibrium, 
and for these problems the terms of HE proportional to 
~ do not play any role. Moreover, since at the same 
time equation (6.5) holds, then equation (III) loses its 
independent meaning, and in the law of increase of en­
tropy (IV) terms quadratic in anM/ax are in fact 
quadratic with respect to the second derivatives of the 
velocity and must therefore be neglected. We arrive at 
the conclusion that for the majority of hydrodynamic 
problems the HE system has its usual form in which the 
rotational degrees of freedom affect only the values of 
the kinetic coefficients. 

Let the gas now be placed in a constant magnetic 
field. (The inhomogeneity of the magnetic field can be 
easily taken into account by adding to equation (II) the 
force Fj = n/7iVjBi)· The transport equation (III) taking 
into account the inequality (5.9) in a magnetic field has 
the form 

aoM I at= [OMOn]- vM(OM- Ov- O.), 

where the angular velocity, in accordance with the fore­
going, can be regarded as a given quantity. The station­
ary solution of this equation is 

OM= Ov[VM2 I (vM' + 0.')] + [OvOn][VM I (vM' + 0.')] 
+ o.[ (VM2 + 0.' + OvOn) I (vM' + 0.') ]. 

At the same time, in accordance with equation IV 

nTdS I dt = 6(0M- On- Ov) 2 = MOvOn]' I (vM' + 0.'). 

This quantity is quite small. However, it is of signifi­
cance in principle, demonstrating that the rotation of a 
gas in a constant magnetic field occurs with liberation 
of heat if the directions of the magnetic field and of the 
rotation do not coincide. 

We assume that the gas as a whole is not rotating. 
Then the polarization of the rotational angular momen­
tum is established at the level 

For oxygen (cf., (2.2), (3.6)) we have 

On= -(fJ.ohl IT) B. 

For a nonparamagnetic gas this quantity is smaller by 
an order of magnitude. 

If the magnetic field is switched off, then the moment 
of momentum which is concentrated in the presence of 
a magnetic field in the rotational degrees of freedom, 
during a time vM: goes over practically entirely into the 

translational degrees of freedom, and the gas acquires 
a small angular velocity Oy RJ ~( a/L)2 • This effect 
is an analog of the Einstein-de Haas effect for ferro­
magnets. 

Evidently the inverse effect will also exist (an 
analogue of the Barnett effect)-the appearance of a 
magnetic moment in the gas in the presence of rapid 
rotation of the gas as a whole (cf., (6.5), (A.2)) 

i1 = (~-tM I 3T)Ov. 

The authors are grateful to I. K. Kikoin for discussing 
the experimental aspects of this work. 

APPENDIX 

Let the state of the gas be described by the distribu­
tion 

I= exp{ ~(F-E+ Vp+OM)}. (A.1) 

For this distribution in the linear approximation with 
respect to the parameters V, 0 and the magnitude of 
the magnetic field B we have 

n = 2(2nmT)''•(2n!T)e'1r, 
E=5TI2, v=v, M='/JO+<~-tM/3T)B, (A.2) 

'ji = (~-tMO + I''B)/3T. 

If in the distribution (A.1) the parameters T, F and (l 
do not depend on the coordinates, while 

V = V, + [Or], V, = const, (A.3) 

then the logarithm of this distribution can be decom­
posed into a sum of additive integrals of the motion 
(2.8). In this case the distribution (A.1) must make the 
collision integral vanish, and in this sense can be called 
the equilibrium distribution, with the vectors Vo and ll 
determining the velocity and the angular velocity of 
rotation of the gas as a whole. 

We substitute the distribution (A.1) into the statisti­
cal definition of entropy calculated per molecule, 

(A.4) 

The differential of this expression is 

dS = ;~(F-E+ v)l +OM) -}a (F-E+ Vp+ OM). (A.5) 

Moreover, from the definition of the particle number 
density it follows that 

- dT - - - 1 - -
n = <f>, dnfn=- T' (F-E+ Vp+OM) +r(dF + pdV +MdO). 

(A.6) 
Adding (A.5) and (A.6), we obtain 

- dn 1 - - - (A 7) dS +n=-r(-dE+ Vdp+OdM). • 

This relation leads to equation (3.5) in the text of the 
article if with the aid of (A.2) one expresses the param­
eter 0 in terms of the average value of the rotational 
angular momentum. 
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