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The narrow doublet observed in depolarized components of light scattered by certain liquids l 1 - 31 is 
considered, and it is assumed that the singularities in the temperature dependence of the interval be­
tween the maxima of this doublet, 2~vtr, are due to the presence of two relaxation times in the liquid.l 61 

Application of the usual relaxation theory of Rayleigh scatteringl 91 to this case makes it possible to 
ascertain the conditions for the existence of a shear doublet (Sees. 2 and 3) and to demonstrate that in 
the case when the relaxation times differ strongly (Sec. 4) it is possible to obtain satisfactory quanti­
tative description of both the temperature (Sec. 5) and the angular (Sec. 6) dependences of 2 ~Vtr· 

1. FORMULATION OF PROBLEM 

THE presence of a narrow doublet in the spectrum of 
the depolarized components J~ = JY 1 > in the scattering 
of light in liquids was first establilhed by Starunov, 
Tiganov, and Fabelenskii. l 1 - 31 On the basis of polari­
zation investigations and of the study of the angular de­
pendence of the displacement ~vtr of the doublet maxi­
ma observed in nitrobenzene, quinoline, and aniline, the 
authors have reached the conclusion that this doublet is 
due to a shear wave satisfying the Bragg condition and 
to anisotropy fluctuations associated with this wave. 
Subsequent experiments by these authors, and also the 
results of Stegeman and Stoicheffl 41 pertaining to 
three more liquids in addition to those mentioned above, 
have shown that the temperature dependence of ~ Vtr is 
the opposite of that expected from the Leontovich relax­
ation theory. l 5 l 

Further experiments by Fabelinskii et al. l61 with 
salol in a wide temperature interval (from + 120 to 
-48°C) revealed the presence in this liquid of two 
branches of the temperature curve of ~Vtr-one de­
creasing and one rising with increasing temperature 
(Fig. 1). In the interval from +46 to -2.5°C, no fine 
structure of the wing (henceforth called the shear dou­
blet) is observed between the two branches.l 2 J An ex­
planation of this phenomenon was proposed already in 
[B 1, where it was shown qualitatively that the presence 
of two relaxation times makes it possible to describe 
satisfactorily the appearance of both branches of the 
temperature curve of ~vtr· 

At approximately the same time, Volterral 7 J devel­
oped a relaxation theory of scattering in the case of two 
relaxation times and offered, independently of l6 J, an 
explanation (likewise qualitative) of the increasing tem­
perature branch of ~vtr in quinoline. In a paper by 

1lThe superior indices denote the polarization of the primary wave 
propagating along the x axis, and the inferior ones the observed polari­
zation of the wave scattered in the direction of the y axis. In formula 
(I) below, the inferior index h denotes horizontal polarization. 

2li. L. Fabelinskii was kind enough to inform me that similar results 
were also obtained for benzophenone. 
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FIG. I 

V. P. Romanov and V. A. Solov'ev delivered at the 9th 
Conference on the Physics of Liquids (Kiev, 1969), in­
dependently of [6 • 71 , an explanation was also proposed 
for the shear doublet. This explanation was subsequently 
reported in l 81 where, in addition, the results were con­
firmed for quinoline and data were given for benzylalco­
hol. 

We present in this article a quantitative analysis of 
the conditions for the existence of a shear doublet in 
liquids having two anisotropy relaxation times. The 
analysis is based on the results of the general relaxa­
tion theory in [ 91 for Rayleigh scattering. 

2. SPECTRAL INTENSITY OF DEPOLARIZED LIGHT 

The indicated theory gives for the spectral intensi­
ties of the depolarized components of scattered light the 
formula 

k.T [ q,'X' 1 n.' ] 
.Th'(w,q)=//(w,q)=-2-. 4(' ')+-2~-1+. -c.c .. mw Jtq - pw .::.,. zwr, 

• (1) 
Here w is the frequency reckoned from the frequency 
of the primary wave, q is the scattering vector (q~ = k2 

x sin2 e, q2 = 4k2 sin2(8/2), ()is the scattering angle, and 
k is the wave number of the primary wave), iJ. is the 
complex shear modulus, X is the complex mechano­
optical coefficient, p and T are the density and tem­
perature of the medium, and c.c. denotes the complex 
conjugate. For liquids in the case of two anisotropy re­
laxation times T 1 and T2, the values of iJ. and X are 
given by [ 91 
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where n1, 2 and N 1, 2 are real constants, As w- 0, we 
have, accurate to the first order in i w 

fL= iw (N,'-r,+N,'-r,)=iWT)o, X=iw(n,N,-r,+n,N,-r,)=iw·Ze,MT)o, 
2 

where 1Jo is the static viscosity, E0 the optical dielec­
tric constant of the liquid, and M its Maxwell's con­
stant. As w- oo we have 

fL = '/,(N,' + N,') = fLoo, X= n,N, + n,N, =X~. 

Using the last four relations to express N~, 2 and 
n1 , 2 N 1, 2 in terms of 1]o, M, J.L 00 , and X00 , we can easily 
reduce (2) to the form 

= iW(TJo + iWfLooT1Tz) X= iw (2e,MT)o + iwXooT,Tz) (3) 
fL (1 + iw-r,) (1 + iw-r,) ' (1 + iw-r.) (1 + iw,;,) ' 

and from the positiveness of N~, 2 , assuming T 1 :::: T 2 , 

it follows that 

Substituting (3) in (1), we obtain 

k"T { qz' 
lh' = l! = - 2niw 4; . 

[ iw(2B,MT)o + iwXoo't1't2 ) 2 

where 

_ iw ( n,'-r, + _n_.'-,T_a -)} 
1 + w'-r,' 1 + w',;,' ' 

T)oq' co,..=-, 
p 

(4) 

c.c.] 

(5) 

(6) 

In the case of one relaxation time, i.e., when T 1 = T 2 

= T, and, as can be readily seen, 

formula (5) yields 

J, -J• _ kBTXoo 2
T { q12WT 2T 

h - z - 4ttfloo ~ ' 

X [ (1 + iw,;) [(w'i- WT'),;- iw] c.c~ + 1 +1w',;' }· (7) 

In turn, in observations at a right angle (9 = 90°, q~ 
= q2/2), Eq. (7) goes over into Leontovich's well-known 
formula. [ 5 ' 10 J 

3. CONDITIONS FOR THE EXISTENCE OF THE 
SHEAR DOUBLET 

A thorough knowledge of the extent to which the dou­
blet becomes pronounced against the relaxation back­
ground requires, of course, an analysis of the frequency 
dependence of the complete expressions (5) and (7). For 
definite values of the parameters, the corresponding 
curves can be calculated with a computer, but to ascer­
tain the conditions under which the doublet is in general 
possible it suffices to investigate the roots of the cubic 
polynomial in i w contained in the denominator of (5) 
and of the quadratic polynomial in the denominator (7). 
Factors of the type 1 + iwT in the denominators canal­
ways be separated by expanding in partial fractions, and 
contribute only to the relaxation background, i.e., they 
produce in the intensity terms of the form (1 + w2 T 2f\ 

which have a maximum at w = 0. Obviously, the doublet 
is possible when the indicated polynomials have a pair 
of complex conjugate roots 

(8) 

and constitute in this case two Lorentz lines with half­
width t, shifted by intervals ±~from w = 0 (in units of 
WT). 

In the case of one relaxation time, the quadratic tri­
nomial in (7) has roots in the form (8) when 2 WT T > 1, 
with 

Although the doublet exists when y < 4, it is clear that, 
even if we disregard the relaxation background, one can 
count on observing the doublet only in the region 
y < 1 (wTT > 1), where the half-width t is much 
smaller than the shift ~. With increasing temperature, 
the relaxation time T decreases (y increases), and, 
consequently, in the case of one relaxation time the dou­
blet is possible only in the region of not too high tem­
peratures. 

One root of the polynomial cubic in i w in (5) is al­
ways real (it contributes only to the relaxation back­
ground), and the condition for the existence of two other 
roots of the type (8), as well as the expressions for the 
roots themselves, can be obtained in accordance with 
the Cardan formulas. 

We introduce the variable z = iw/ WT and the param­
eters 

According to ( 4) 

and accordingly, by virtue of (9) 

1 
v=-,-,. 

(J)y Lz 

-'/,(1- 2e) ~ ~ ~ '/,(1- e/ 2). 

(9) 

(10) 

When E changes from zero ( T2 << T 1) to unity ( T 2 = T 1 ), 
the interval of permissible values of {3 narrows down 
from the segment (- ~, %) at E = 0 to a fixed value 
{3 = ~ at E = 1. 

By equating the cubic polynomial in (5) to zero, we 
obtain in the notation of (9) the equation 

- -( 1+e) z'+l'v(1 + e)z' +(1 + ey)z +l'v 2~+-3 - = 0. (11) 

Cardan's formulas give for its complex-conjugate roots 
in the form (8) 

r3 ,_u+v+,,-1+e 
il=z-(u-v), ,--2- rv-3-, (12) 

where 

uv} -= ±(Jfq' + p' + q)'l•, 

q'+p'=Wv+ 2~~y'(1+e)(1-2e)(1- ~) (13) 

1 [ 1 1 ] + 27 1-y(1-e+e')+ 3 v'(1-e+e')'-Ty'e'(1-e)' . 
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FIG. 2. The (j3, /')plane in the case e = 0 (a), e = 0.2 (b), e = 0.5 (c), 
e = 0.8 (d), and e =I (e). 

The condition for the existence of such roots (the condi­
tion that u and v be real) is 

q' + p' > 0. (14) 

Formulas (12) and (13) determine t:. and ?; as func­
tions of E, {3 and y, Figures 2a-e show, shaded, the 
region of the plane ({3, y) where the doublet exists, for 
five values of E. The condition ( 10) determines the per­
missible band of {3; in addition, a curvilinear wedge 
penetrates into this band, and the condition (14) is vio­
lated within this wedge. The wedge crosses the upper 
boundary of the shaded band at the point y = 4/E 2, and 
the lower boundary at y = 4. At equal relaxation times, 
the permissible region reduces to a segment from y = 0 
to y = 4 on the straight line {3 = Ys (Fig. 2e ). 

4. CASE OF STRONGLY DIFFERING RELAXATION 
TIMES 

Let T1 >> T2, i.e., let the parameter E be small 
enough to be negligible compared with unity (Fig. 2a). 
The permissible values of {3 lie in the interval (- %, %), 
and the top of the forbidden wedge is at the point 
{3 =- %, y = 3. At E = 0, expressions (13) become 
much simpler, namely 

Plots of t:. and ?; as functions of y are shown for a 
number of values of {3 in Figs. 3 and 4, respectively. 
So long as {3 > - % the shift t:. does not vanish for any 
value of y. The straight line {3 = -% already passes 
through the top of the forbidden wedge (Fig. 2a), and ac­
cordingly, for this value of {3 the shift t:. vanishes when 
y = 3. The straight lines {3 = const < % intersect the 
wedge, and correspondingly there appears in Fig. 3 an 
interval of y in which there is no doublet (all three 
roots of Eq. ( 11) are real). The ends of this interval are 
the points 

y,,= 2(6~3+1) [t-zw±z7(~+-})Y(~+-})(~- ;)]. 
At these points t:. = 0 (u = v =- q1 / 3 ), and the half width 
?; of the doublet lines is 

4 
1 

I I; 

15 

FIG. 3 

FIG. 4 

It is seen from Fig. 3, furthermore, that when 

r zo 

{3 $ - %1 the t:.( y) curves acquire sections on which t:. 
increases with increasing y. Starting with {3 =- ?'9 , 

this section forms a separate branch, which continuously 
drops and moves farther away to the right along the y 
axis with further decrease of {3. The limiting value 
{3 = - Ys returns us to the case of one relaxation time, 
when there remains only one t:.(y) branch that decreases 
from unity to zero as y increases from zero to four. 

We note that when E * 0.2 (Fig. 2b), the rising branch 
of t:. (y) practically vanishes. It can thus exist only at a 
sufficiently small ratio of the relaxation times 
E =T2/T1. 

5. TEMPERATURE DEPENDENCE OF t:. IN THE 
CASE WHEN E = 0 

It is easy to note that there is a complete qualitative 
correspondence between those curves of Fig. 3 which 
have two branches (decreasing and increasing with in­
creasing y) and the experimental t:.vtr(T) plot (see 
Fig. 1). By choosing a certain monotonic temperature 
dependence of the parameters {3 and y (which does not 
violate the condition E << 1, under which the curves of 
Fig. 3 have been plotted), it is also possible to obtain 
fair quantitative agreement.3 > By way of an example, 
Fig. 5 shows the t:.({3, y) curve taken from Fig. 3, cor­
responding to {3 = - ?'21 and transformed into a function 
of the temperature T from a function of y by means of 
the exponential dependence of y on T, namely 

3lOf course, it would be better justified and simpler to compare the 
theoretical curves with direct experimental data on the temperature de­
pendence of the parameters of the liquid (tJ.~, TJo, p, -r1 , -r2 ), but the nec­
essary information either does not cover the entire temperature interval 
of Fig. I, or is generally nonexistent. 
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lgy = -2,3079 + 0,010034T. (15) 

The same Fig. 5 shows the experimental points for salol 
(Fig. 1), the ordinate scale being chosen such that the 
experimental point D.vtr = 0.075 cm-1 (T = 270.5°K) 
falls on the curve recalculated in this manner. However, 
one must not attach too great a value to the resultant 
fairly good agreement between theory and experiment. 
First, the theoretical curves do not take into account the 
relaxation background, which can decrease the values of 
D. by 15-20%, and whose influence on the experimental 
D.vtr cannot be excluded. 4 > Second, at low temperatures 
(high viscosities) the applicability of the relaxation the­
ory is in general subject to question. 

Let us nevertheless ascertain what can be sa.id con­
cerning the temperature dependence of the parameters 
of salol, by starting from the relation (15). 

The temperatures 200 and 400 o K correspond in ac­
cordance with (15) to values y"' 0.47 and 50. Accord­
ingly, the product D. = 0 (u = v = -q112), decreases by 
one order of magnitude on going from the left edge of 
the plot in Fig. 5 to the right one. At very low tempera­
tures, when D. - 1, the doublet lines are separated by 
an interval 2 WT· Judging from the experimental curve 
of Fig. 1, this limiting value of D. corresponds to 
2D.vtr"' 0.3 em-\ i.e., Wt"' 2.83 x 1010 rad/sec. Con­
sequently, at 200 o K we have 

1:, = 1 I roT¥'\' Q.: 5.15 ·10-"sec. 
The lack of data on the temperature dependence of JJ.oo 
prevents us from estimating WT and T 2 separately for 
other temperatures. 

If we assume arbitrarily that WT retains the value 
given above in the entire temperature interval of inter­
est to us, then we obtain at 273 and 400 o K, respectively, 
T 2 =2.15xl0- 11 and 5xl0-12 sec. 

o.s 

o.z 

ll,f O.lf 

0.1 

D.O. 

ZJU 

FIG. 5. Dependence of/:,. on Tat fJ = -4127. 

1/.UU 
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4>The third root z1 of (II) is always real (and negative). Therefore 
the expansion of the cubic polynomial (II) contains the factor 

lro 
z-z, =--•• = -z,(i+lw-.'), 

ror 

where r' = -I/wTz1 plays the role of a certain additional relaxation 
time, which, generally speaking, differs from r1 and r2 and depends on 
the parameters E, fJ and 'Y· Thus, the spectrum of the relaxation back­
ground does not reduce in the general case to a superposition of two 
wings of the form (I + w2 r~f1 and (I+ w 2df1 , and its form requires 
a more detailed analysis. 

The temperature 200° K corresponds to the following 
(extrapolated} values of the density and of the refractive 
index: p = 1,5g and n = 1.637. For the wavelength 
.\ = 6328 A we obtain 

q' = Bn'n'/ J..' = 5.3·10"Cm -,2 

which yields at wT = 2.83 x 1010 

POOr' -2 1/ !.t~ oo -= -,- = 2,4·10"dyn-cm, v ~ = r- = _x = 1230m-sec. 1 
q p q 

One could use the ratio 

!.t~'l:• I f]o = 27, 

which follows from (g) when E << 1 and {3 =- Y27· How­
ever, there is hardly any advantage to carrying out fur­
ther quantitative estimates in view of the patent lack of 
actual data on the temperature dependence of various 
parameters of salol. 

6. ANGULAR DEPENDENCE OF THE INTERVAL 
BETWEEN THE DOUBLET LINES 

The scattering angle (} enters the half-interval D. be­
tween the doublet lines only via the square of the modu­
lus of the scattering vector q2 = 4k2 sin2 ( e /2), i.e., via 

2 l.tmq' 2 •. 2 a 
ror ==-p-= roeo Sln 2' 

where Wgo = ..f2k2 JJ. 00 /p is the value of WT at(}= goo. 
The parameters E and {3 do not depend on WT, and for 
y we have 

1 V•• 1 
'\' = wx'1:,' = 2sin'(a/2) ' V•• = oo 90'1:,' · 

Variation of e to 180° corresponds to a change of y 
from 00 to Y90 /2. 

According to (8), the dimensional half-interval be­
tween the doublet lines is D.wtr = WTD-, where D. is de­
termined by formulas (12) and (13). In order to use the 
already calculated curves of D. = D. ( {3, y) to plot D-Wtr 
against (} (we confine ourselves, as before, to the case 
E << 1}, it is advisable to retain the parameter y as the 
argument: 

1\oo,,=lllx/\(fl,y) =lllool''Y••/'\'1\(fl,y). 

It would be natural to refer D.wtr to the value of this 
half-interval at e =goo: 

~Woo= iOOooi\(fl, '\'oo), (16) 

i.e., to plot the following curves as functions of e (or of 
sin (e /2)}: 

1\w,, = y ~ 1\(fl,y) 

1\w,. V 1\ (fl, '\'oo) 
. a ,; Y•• 

smT=f2V· (17) 

By specifying the value of {3, i.e., by choosing any 
one of the curves of Fig. 3, and then fixing the value of 
Y9o (and by the same token, in accord with (16}, also the 
ratio D.Weo/woo), it is easy to plot D.Wtr/D.w90 against 
sin (e/2) by using the chosen curve of Fig. 3 and formu­
las (17). 

Figure 6 shows three such plots corresponding to 
{3 = - Y27. Two of them ( Y9o = 20 and y9o = 12) pertain 
to the case when the width of the doublet is determined, 
for observation at an angle e = goo, by the rising branch 
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FIG. 6. Dependence of l:!.w/!:!.90 

on IJ at f3 = -4/27 for three values 
of 'Y9o· 

of the l:!. ( y) curve, while the third ( Y9o = 1) pertains to 
the case when this width is determined by the decreas­
ing branch. 

The larger Y9o, the closer t:.({3, y) is to its asymp­
totic value t:.({3, oo) at all values of the scattering angle 
0 < (} < 180° ( oo > y > ygo/2). For example, if y90 = 30, 
so that y changes from 15 to oo, then we find for 
{3 = -'Ym (Fig. 3) that 1l({3, y) changes only from 0.15 to 
the asymptotic value 0.193. In the first-order approxi­
mation we can assume, at sufficiently large y90, that 
1l({3, y) = 1l({3, Y9o) in the entire interval of y from 
Y9o/2 to oo. According to (17), this means that for all 
values of (} we have 

8ro,, 1/'\'oo - e 
~= r-=l'2sin-

ffioo y 2 ' 

i.e., the dependence of llwtr on sin ( (} /2) becomes 
linear. 

Thus, direct proportionality of ilWtr to sin ( (} /2) is 
not at all obligatory. If the width of the doublet is deter­
mined by the rising branch of the t:.( y) curve, then the 
plots of llwtr against sin ( (} /2) can have a maximum 
(see the curves for Y9o = 20 and 12 on Fig. 6), as was 
obtained by Stegeman by direct measurements for a 
number of liquids. [ 11 l 
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