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We obtain a class of Hamiltonians of the crystal field for the Mossbauer ion Fe 3+ with S = %, which 
yields for polycrystalline samples identical hyperfine structure spectra from two different Kramers 
doublets. The cases of greatest practical interest are analyzed. 

1. INTRODUCTION 

IT is known that in the general case the hyperfine 
structure spectra of the Mossbauer lines have a much 
more complicated form in paramagnets than in mag­
netically-ordered substances[ll. The ground term of 
the Mossbauer ion in a paramagnet is split by the 
crystal field into a series of Stark sublevels, each 
characterized by its own hyperfine structure. The ob­
served spectrum is a sum of the spectra of all the sub­
levels of the ion, with allowance for their populations 
at a given sample temperature. 

The interpretation of the corresponding spectra is 
in the general case a very complicated problem even if 
the electron-spin relaxation time is infinitely long. This 
problem is relatively easy to solve if one knows the 
parameters of the Hamiltonian of the crystal field for 
the Mossbauer ions. Otherwise, the interpretation is 
by comparing the experimentally measured spectra 
with the spectra calculated under relatively simple 
assumptions with respect to the symmetry of the crys­
tal field. Thus, in[ 2• 31 they considered in detail the 
spectra for the Fe 3 + ions in the case when the Hamil­
tonian 76CF of the crystal field is the sum of an axially­
symmetrical term and a term of rhombic symmetry. 
The spectra for a purely cubic surrounding of the Fe 3 + 

ions are also easy to calculate. 
In an investigation of the Mossbauer effect in a 

frozen aqueous solution of the salt Fe( Cl04h, contain­
ing Fe3 + ions in the state with S = %, we encountered 
an interesting case when the hyperfine structures from 
two Stark levels of the Fe3 + ion apparently coincided. 
This raises the purely theoretical question of finding 
all the possible forms of the crystal-field Hamiltonian, 
which admits of such a coincidence. The solution of 
this problem, naturally, would greatly simplify the 
analysis in the reconstruction of the form of JfeCF 
corresponding to the observed spectra. We present 
below this investigation, in which principal attention 
was paid to the important case of the Fe 3 + ion ( S = %). 

2. FORMULATION OF PROBLEM 

We consider only ions with half-integer total angu-
lar momentum of the electron shell. The ground term 
of such ions is split by the crystal field in the general 
case into a series of Kramers doublets, and we are 
interested only in the case when the hyperfine struc-
ture of the Mossbauer spectra is the same for two of 
these doublets. We shall call such spectra "degenerate." 
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It is clear that such a degeneracy can take place 
only when the tensors of the hyperfine interaction for 
the two different Kramers doublets can be transformed 
into one another by rotating the coordinate frame. If 
the hyperfine interaction for the free ion is isotropic, 

d'eh, = AIS, (1) 

then, on the other hand, for the spectra of the hyper­
fine structure from two different doublets to coincide 
it suffices that the wave functions of one doublet be 
transformable into the corresponding wave functions 
of the other doublet by a definite rotation of the co­
ordinate axes. We see that in this case the degeneracy 
of the spectra of the hyperfine structure can be ob­
served only in polycrystals or else in single crystals 
under certain strictly defined orientation of the latter. 

We denote by z the axis rotation about which pro­
duces the indicated transformation of the wave func­
tions of the two doublets. We write down in this co­
ordinate system the wave functions corresponding to 
the i-th Kramers doublet in the form 

1r.<•>> = 1:,C~' lm>. 1ri'>> = _E(- w-mc~~ lm>, (2) 

where I m ) is the state of the electron shell with Sz 
= rn. If the doublet r{l) goes over into the doublet 
r<z> by rotation ofthe coordinate system about the z 
axis through an angle cp, this means that 

(z) .,m (1) 
Cm=e Cm'! 

Using (3), and also the fact that the doublets ro> 
and r< 2> are orthogonal to each other, we obtain a 
system of equations for the coefficients ch;> and the 
angle cp: 

(3) 

(4) 

Naturally, conditions (3) and (4) limit the class of pos­
sible states of the considered ion in the crystal. On 
the other hand, if we know all the wave functions 1 r<i>) 
and the corresponding eigenvalues Ai, then we can 
reconstruct the Hamiltonian of the crystal field XcF: 

< I ~ I ') , ~ ' [ (i) (i)• + ( 1) ZS m ' (i)• (i) ] m t7r.Jcy m = ~ ll.i Cm Cm' - - -mC-mC-m'. (5) 

It is clear that the conditions (3) and (4) impose limita­
tions on the class of the Hamiltonians XCF· 

In concluding this section, we write out the formulas 
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for the hyperfine intera;ction tensor characterizing 
each of the doublets rm, which we shall need subse­
quently in the consideration of different concrete 
cases. We recall that usually the hyperfine interaction 
(1) is written for a Kramers doublet in the form of the 
spin Hamiltonian 

1~ ~'~IS' ~hi = £...J Aa~ a p , {6) 

where the effective spin S' = Y2, and the indices a and 
{3 :run through the values x, y, and z. The coefficients 
Ali~ are then given by the expressions 

Aa~~ = 2A <d~ ISalr~~~ ), 

A.!.~=2ARe(r~ll IS+Ir.~ ), 
I (7) 

A~~ = 2A Im (r~ll I Sa I rlll ) , 

where Sa is the a-th component of the true spin of the 
ion. 

3. THE CASE OF SPIN S = :Y2 
We start the consideration with the simplest case of 

the spin S = %, corresponding to the behavior of the 
iron ions in a number of complex chemical com-
pounds[4l. . 

The wave function I ri11 ) can be written without loss 
of generality in the form 

lr~111)=c•J:1 l'/,)+c~1 1 1/,)+c~\l- 1/z), (8) 

where the coefficient c312 is real. Then Eqs. (4) take 
the form 

(1}(1). ljl cv.tuJi sm2 = 0, 

(1)2 3cp (I (I) Cj) 
c•1, cos 2 +(1cv.l'+lc-v.l')eos2 = 0, 

(1)1 3cp (1) (1) ljl 
c•,, sin2+< Icy, l'-lc-'kl')sin2 = 0, 

(9a) 

(9b) 

(9c) 

c~!'+ 1~1' + 1J~'k I'= 1, (9d) 
to which we added the normalization condition for the 
coefficients c~ of the function (8). 

From {9a) we obtain two possible cases: 

c~11 =0, 
'(I) 

C-1 =0. 

(lOa) 

(lOb) 

The case sin(cp/2) = 0 is of no interest, since it cor­
responds to rotations through the angles cp = 0 and 211. 

If we use (10) in the remaining equations of (9), we 
readily find that in the case (lOa) there exists a non­
trivial solution of the system (9) at a value of rotation 
angle cp = 11/2, namely 

(1) 1 (1) 1 "' 
c•,, = l'2 ' q, = l'2 e ' (11) 

and in the case (lOb) such a solution corresponds to 
cp = 11 and is given by 

c•~'1 - 1 JY!-=~e'«, (12) .-12, l'2 
where a is an arbitrary phase. 

These relations together with Eq. (5) for the matrix 
elements of the Hamiltonian of the crystal field make 
it possible to reconstruct the form of JIS'CF of interest 

to us. In the case S = % under consideration, the 
Hamiltonian J'§CF has only two eigenvalues, >.. 1 = A 
for the first doublet and A2 = -A for the second. The 
Hamiltonian ~CF for the case (11) has the following 
matrix form: 

~I .,. _,,, 'I• -a,, (13) 

.,. 0 Ae-l« 0 0 _,,. ,.~a 0 0 0 

"' 0 0 0 ,.-~· -.,, 0 0 'J..irt. 0 

and analogously for case (12): 

XI .,. 'I• ..,,, -•,, 

.,. 0 ,.--~. 0 0 

''• Ai« 0 0 0 _,,, 0 0 0 ,.--~· -.,. 0 0 Aei« 0 (14) 

The phase a can be eliminated from the matrices (13) 
and (14) by rotating the coordinate axes, and it can be 
set equal to zero in (11) and (12). 

The Hamiltonians KCF corresponding to the 
matrices (13) and (14) are respectively 

~CP = ~(S.'- S.'). 
l'3 

"' :Me,= -=-(s.s. + s.s.). 
l'3 

(15) 

(16) 

It is easy to verify that the Hamiltonians (15) and (16) 
go over into each other as a result of rotation of the z 
axis through an angle 11/4 with subsequent transforma­
tion of the coordinate axes, and are equivalent. Thus, 
in the case· S = 1'2 only one Hamiltonian J'CCF (for con­
creteness) of the type (15) has eigenstates that give an 
identical hyperfine structure. 

The wave functions of the doublets corresponding to 
(15) are 

I rll)) = l'~ ( I : ) + 1-+)) ' 

<•' 1 (13 ) -,- 1 )) 1r. >= l'2 2 - 1-2 
Using (17) and (18), and also formula (7), we can 
easily show that for bolt doublets the nonzero com­
ponents of the hyperfine-interaction tensor are 

A~= A("y3+ 1), A!:1= A("y3-1), 

A~1= A_(y3-1), A;:1= A(y3+ 1), 

(17) 

(18) 

Thus, as expected, the spectra of the hyperfine struc­
ture of the Mossbauer line from both doublets coincide 
fully in the case of a polycrystalline sample. 

4. CASE OF SPIN S = % 
In analogy with (8), we write the wave function 

1 r~u> in the form 
(1) (1) (!) (l) (ll {tl ( ) jr,) = c•,,l'f,)+c•nl'/,) +cy, l'f,)+c-v.j-'/,)+,c_•,,j-•f,), 19 

where the coefficient c~g is real. Then Eqs. (4) take 
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the following explicit form 

(1)2 5cp (1) (1) 3cp 
c•;, cos-+ ( jc•1,j' + lc-•~,j')cos-2 2 

(1) (1) cp 
+(lev, I' +!c-•J, !')cosy= 0, 

(1)2 5cp (1) (1) 3cp 
c•1,sin2 +(1c•1, l'-lc-•,,i')sin2 

(1) (1) q> 
+(lev, l'-lc-'hl')sin2=0, 

(20a) 

(20b) 

(20c) 

c·~!' + !c·)~ l'+lc~li,l'+ ic~1 I'+ jc~~~. I'= 1 (20d) 

We shall find it convenient to introduce the notation 
(I) (1) (1) 

C5;2 = r, C3;2 = ra cos vseia;\ Clf: = Tt cos Vteict1, 

(21) 

where, without loss of generality, it can be assumed 
that r, r1o and r 3 are positive and that the angles Yt 
and y 3 are in the interval from zero to 1T/2. 

If we use the orthonormality condition for the 
co.lumns of the matrix made up of the coefficients d 
c~N of the wave functions of all three doublets, then we 
can readily find a limitation to which the parameters r, 
r1o and r 3 are subject: 

(22) 

Equations (20) do not change when the angle cp is 
replaced by - cp, so that only the region 0 ::s cp ::s 1T 
need be considered. From (20b) and (20d) we can ex­
press r 1 and r 3 as functions of r and cp: 

(23a) 

r,'={ (1-r')cos; +r'cos~cp]/( cos; -cos~<P), (23b) 

where cp ;.o 0, 1T (the case cp = 1T will be considered 
separately). The conditions (22) with allowance for 
(23) make it possible to impose additional limitations 
on the region of permissible values of r and cp. 

It turns out, however, that even stronger limitations 
result from the obvious conditions 

icos2y.j~1, icos2y,j~1. (24) 

The expressions for cos 2 y 1 and cos 2 y 3 are found 
from Eqs. (20a) and (20c) and are of the form 

cos 2yl = 1 + ABJ2r'r1' sin_!_sin~, (25a) 
2 2 

2 • 3cp . 5cp 
cos2y,= 1-AC/2r'r, sm 2 sm2 , (25b) 

where we introduce the notation 

(26a) 

(26b) 

(26c) 

If we consider r and cp as polar coordinates on a 
plane, then, with account taken of (24), the region of 

b 1:[3a' 
y-11 

a "' ~ ~ 

FIG. I. Region of permissible 
values of r and .p, and also of r 1 

and r 2 in the case .p = 1r. 

permissible values of r and cp turns out to be sharply 
limited to sections of the plane lying between the 
curves A = 0, B = 0, C = 0, and D = 0, where 

(26d) 

and also the axis cp = 1T/2. These regions are shown 
shaded in Fig. la. In particular, it is seen from Fig. 
la that the region of angles cp < 1r/ 4 drops out from 
consideration in general. 

As to the case cp = 1T, it calls for separate analysis, 
for at this value of the angle Eq. (20b) becomes an 
identity, and we lose one of the limitations on the coef­
ficients ch'i>. To find the general class of the functions 
1 I' ~t 1>) needed by us, it is convenient here to regard the 
parameters r 1 and r 3 as independent. Then we get 
from the normalization condition (20d) 

r= (1-r,'-r,')¥•, 

and the expressions for cos 2 y 1 and cos 2y 3 are again 
given by (25) and (26), in which we must put cp = 1T· At 
the same time, as can be readily verified directly, the 
phases am satisfy the condition 

a,+a-• =a,+ a-~+n(2n+1). 

The region of permissible values of the parameters r 1 

and r 3 is bounded by the inequalities (22) and is shown 
in Fig. lb. 

In principle, if there are no limitations on the type 
of the crystal-field symmetry, then, as shown by Fig. 
1, im the case of a spin S = % there exists an infinite 
number of Hamiltonians Y6cf, whose eigenstates have 
a degenerate hyper fine structure. 

Let us show how to reconstruct effectively the form 
of the Hamiltonian ?6CF corresponding to an arbitrary 
point ( r, cp) of the shaded region. In the general case 
we should have for S = % 

2 

"'"' = "' b<2>o~<2> + "' b<•>o'<•> fiCF ~ k ~ ~ k -k• (27) 
f<.=-2 k=-4 

where bft> are numerical coefficients and qn> are 
irreducible tensor operators of rank n, constructed of 
components of the operator S, which transform when 
the coordinate system is rotated like the corresponding 
spherical harmonics yen> ( e, cp ). The explicit form of 
these operators can be found, for example, in[5 l, 

The operators f>km possess the property 

(28) 
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which makes it possible to obtain from (27) the follow­
ing expression for the coefficients bftm: 

-cn>:Jt ~ <m' I Ok"') I m) <m I iRcF I m') 
b~n) = Sp (~k _ CF) = ...;;mc:!.1 .::.:m' ________ _ 

Sp (O~"'>o~~) ~ <m' 1 b~"'> I m> <m I o<:J.> I m') 

(29) 

m,m' 

The matrix elements ( m IJ'&'CF I m') which enter here 
are determined by formula (5), which in the case 
S = % contains summation over three doublets. There 
is, however, the possibility of expressing these matrix 
elements only in terms of the coefficients c~. To this 
end we introduce the quantities 

A, =J..,-J..,, A,=J..,-J..,. 

Then, with allowance for (3} and (5), and also of the 
circumstance that .>.1 + .>.2 + .>. 3 = 0, we obtain 

(30) 

(m/J'Cc,/m')= {c~)c~~· +( -1)'•-m-m•c~\);c~~.} (A1 + A2e~'"-'"'J0)- (31} 
-'/,(A, +A,) I>,.,.,. 

Thus, the matrix elements arcF can be easily cal­
culated for the given point ( r, cp) with the aid of formu­
las (21), (23), (25}, (26), and (31). In the general case 
they will contain as parameters A 1 and A 2 and the 
phases a±I and a±s· From (20a) we can easily deduce 
that the phase am are related by 

+ { a, + a_, + 2nn, :t/4 .;;; <p < 2n/3, 
a, a_,= a,+ a_,+ (2n + 1) n, 2n/3 < <p.;;; n, 

where n = 0, ±1, ±2, .•• By virtue of this, only three 
phases am out of the four are independent, and conse­
quently J!;'CF ·will contain five arbitrary parameters. 

We shall need subsequently expressions for the co­
efficients bkm, which we present below: 

{J) f (1)2 (!) (I) (1) (1) 
b, = 42 [5c•,, -(/c•1,/'+lu1,/')-4(/cy, 1'+/c_y,/')](A,+A,), 

(2) l'30 [ (!) (I) 2 (I) (t)' (I)• (I) ] . 
b, =- c•"c•,,+-=lcy, c•1,-C-Y,c-•1,) (A,+A,e-'"), 

42 )'10 . 

(l) )'15 [ (!) (!) 3 <tO• (1) (!) (t)• ] ,. 
b, =- C'1,c•t. +--= (c•1, c_•,,+c-•t.c•1,) (A, +A,e- "), 

42 y5 

b<•>_ 1 [ ,,,. 3(/ <•>1'+1 (!,)I'> 
0 -105 c~,2 - ca,J c_6,:1 

The coefficients b~W are obtained from the formula 

b:Yi = ( -1fbkm*. 

(32) 

In the next section we shall determine the form of 
J'eCF for a number of characteristic points of the dia­
gram of Fig. 1 which, as we shall see, correspond to a 
fully realistic type of crystal-field symmetry. We shall 
also present the spectra of the hyperfine structure of 
the Mossbauer line expected in this case for Fe 3 + ions 
with the Fe57 nucleus. 

5. DEGENERATE HYPERFINE STRUCTURE SPECTRA 
FOR A NUMBER OF CONCRETE CASES 

We assume first that llCF does not contain the 
operators o~> and is expressed only in terms of the 

operators Ok2>, which are quadratic in the spin. This 
means that all the bl;> = 0. From the expression for 

b< 4> (see (32) it follows that there are two possibilities: 
a) A 1 + A 2 = 0 and b) r 2 - 3d+ 2r~ = 0. An analysis 
shows that in the case (a) it is possible to cause all the 
parameters hft4> to vanish only at two values of the 
angle cp, namely cp = rr/2 and cp = rr, by specially 
choosing the coefficients c~>, In the case (b) the prob­
lem has no solution. Thus, let (a}: cp = rr/2, A1 + A2 
= 0, From (32) we see that then b~2> = b~4 > = b~4 > = 0. 
To cause b~4 >, b~4 >, and b~4 > to vanish, it is necessary 
to stipulate, respectively, that 

<•> <•> <•> )'S c~l· c•> <•> <•> l'W <•> <tO· (33} 
C-'12 = 0, C8~zC% -TCIJz C-3f2 = 0, C5t2 C3t2 --2-Clfz C5tz = 0. 

Solving the system (33) together with Eqs. (20}, we 
readily find that the following coefficients ch;> differ 
from zero: 

c•.1''= _!.... -v 5 , c~>= _!,.e'• c~l, = 3 _ e"" 
2 7 l'2 2'1'7 

where a is an arbitrary phase, which can be set 
equal to zero. In accordance with (27) we have 

1 , j3 -c•> -c•> A, -A, (8 • 8 ') (34) iRcF=6v rr<A.-A.)(O. +O-o) = 4 y"7 X- y . 

The components of the hyperfine-interaction tensor 
for the doublets ro>, r< 2>, and r< 3> of the Hamiltonian 
(34) are equal to 

A~'l= "/,(3 +l'7)A, A~'l= '/,(3- {7)A, A~'>= '/,A, 

A;•>="/,(3-il)A, A~'>='/,(3+)'7)A, A~'>='f,A. 

We now consider another possibility: 

(35) 

(a'): cp = rr, A 1 + A 2 = 0, In this case b~2> = b~2> = b~4 > 
= b~4> = b~4> = 0. In order for b~4 > and b~4 > also to 
vanish, we must have 

c~~ = O, <•> <•> l'10 <•> w 0 cs/J ca/2 - -2-C'fz calz = " 

whence, with allowance for (20), we obtain for the non­
zero coefficients cri] 

c•1'>=_!_Y 10 c•~'l=__;.e'" c.\tO=~e"" 
2 7 ¥2 17 

Putting, as before, the arbitrary phase a equal to 
zero, we obtain from (27) with the aid of (32) 

d'6c, = ~ -v 3 (A,- A,) (0~:>- o,<•>) =A, -_A, (8,8. + 8.8,). (36) 
6 14 4'/7 

As already noted in Sec , 3, the Hamiltonian ( 3 6) is 
fully equivalent to (34). Thus, J'&'CF of the form (34) is 
the only crystal-field Hamiltonian containing no opera­
tors Ok_4> and having eigenstates with degenerate hyper­
fine structure. 

The cases considered above are marked by points 
a and a' in Fig. 1. The hyperfine-structure spectra 
corresponding to these points for a polycrystalline 
sample are shown in Fig. 2. Figure 2a shows the 
spectra for the doublets r< 1> and r< 2>, Fig. 2b the 
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n=o 

H= 1 Oe 

ftll~ 

-too -.ro o .ro -.ro o .fiHOO -.ro o 
a b c 

Velocity in units of r, 

spectra for the do, blet r<s>, and Fig. 2c shows the 
summary spectra in magnetic fields corresponding to 
0, 1, and 3 Oe, and also in stabilizing fields perpen­
dicular and parallel to the direction of propagation of 
the gamma quanta. 

As is well known[6 • 7l, weak magnetic fields greatly 
influence the hyperfine structure of the Mossbauer line 
in paramagnets. According to the theory[ 6l, the spec­
trum from the doublet r<S)' for which the hyperfine­
interaction tensor components are equal to one another 
(see (35)), should be strongly smeared out by weak 
magnetic fields, and in the stabilizing fields H » A/ 2J.L B 
it should reveal a distinct hyperfine structure ( J.LB is 
the Bohr magneton). This is clearly seen from Fig. 2b. 
As shown in[6l, the spectra of the hyperfine structure 
for the doublets r< 1> and r< 2> should not be smeared 
out by weak magnetic fields, since for these doublets 
one of the parameters is much larger than the other 
two (see (35)). However, as seen from Fig. 2a, in this 
case small magnetic fields still noticeably influence 
the spectrum of the hyperfine structure, effectively 
reducing, as it were, the number of observed compon­
ents of the spectrum. In essence, stabilizing fields are 
in this case on the order of only several Oe. 

Figure 2 shows that the case considered by us, if 
encountered in experiment, is very difficult from the 
point of view of interpretation of the observed spectra, 
unless all the parameters of JlCF are known before­
hand and the experiment is carried out without a mag­
netic field. Indeed, in this case the spectrum from the 
doublet r<s> turns out to be smeared out by the random 
magnetic fields, which are always present in a para­
magnetic crystal, and the spectra from r<u and r< 2> 
differ noticeably from the theoretical spectra corre­
sponding to the field H = 0, and are outwardly 
reminescent of the group of six lines characteristic of 
spectra in magnetically ordered substances (see Fig. 2 
at H = 3 Oe). 

We now lift the limitation bft = 0. The most general 
crystal-field Hamiltonian customarily used for ions 
with S = % is[sJ 

FIG. 2. Hyperfme-structure spectra for the doublets of the Hamil­
tonian (34) in the case of the ions Fe3+ (S = 5/2). The relative velocity 
is expressed in units of the natural width r 0 of the 14.4-keV line of the 
Fe57 nucleus. (In constructing all the spectra given in the present paper, 
we used the following values of their parameters: r a + rs = 3r 0 , A0 = 
-26.62r0 , A= 0.571A0 .) 

dGae =D[8,'- '/,8(8 + 1)]+E(8.'-Si) 

+ 1~0 .{358,'- 308(8 + 1)8,' + 258,'- 68(8 + 1)+ 38'(8 + 1)'} 

+ ~ [ 8,' + 8.' + 8,'- ~ 8(8 + 1) (38' + 38 -1)]. (37a) 

Here the terms with D and F correspond to axially­
symmetrical fields of second and fourth orders, the 
term with E describes deviations from axial symmetry 
in the form of a rhombic increment, and the term with 
a corresponds to a field of cubic symmetry. The axis 
of the axially symmetrical contribution may not coin­
cide in the general case with any of the three mutually 
perpendicular cubic axes ~, TJ .1. and l;. 

In terms of the operators Qkn,, expression (37a) 
takes the form 

fO{JI 2 -(2) ~ /2 ;>.(2) -(2) 2 -(4) (37b) o•cF=-;rDOo +v ;rE(u. +0-•)+ 45 F00 +i!Ccub· 

The cubically symmetrical term Xcub takes different 
forms for different orientations of the z axis relative 
to the coordinate system ~, TJ, l;. We present the form 
of J"Ccub which will be needed in what follows, for 
cases when the z axis coincides with one of the sym­
metrical directions of the cube: 

the direction [1, 0, 0] 

:~t =.!:..[a<•>+,/ 5 ca<.,+8~',l]· (38a) 
cub 15 ° V 14 ' ' ' 

the direction [ 1, 1, 0] 

~cu•b=- 6~ [ 8!") --y'iO(O~'l+ 0~:> )- 3 v 1~ co:•> + 0~~ ) ] ;(38b) 

the direction [ 1, 1, 1] 

dtcub= - ~5 a [ 8. (•) + v 1~ co.<•>- o_~>lij . (38c) 

We now turn to Fig. 1 and see what information is 
contained in some of its characteristic points. We con­
sider the following case: 

(b): cp = rr/ 4. At this value of the angle there is only 
one allowed point, at which r = r 3 = 1/{2, r 1 = 0, ys 
= rr/2. Accordingly, the following coefficients c~> 
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differ from zero: 
i 

c•,, = y2' (39) 

where a is an arbitrary phase, which we set equal to 
zero. Using these values of c~>, and also (32), we get 
in accordance with (27) 

:M =A, +A•a<•>_ A, +A• a<•> + )'14(A -A) (a<•>+o~~). (40) 
CF 21 O 105 ° 210 I 2 • l 

Thus, in the case considered here )'(CF is a sum of 
terms with D, F. and a and should correspond to cubic 
symmetry with tetragonal distortion. Assume, for ex­
ample, that F = 0. Comparing (40) with (37) and (38a), 
we easily find that a= - 2D, A 1 + A2 = -7a and A 1 
- A 2 = ..f5i, whence we obtain for the energies of the 
three respective Kramers doublets 

a - 7 
'-•.• = - 6 (7 =F 3y5), J., = Ta. 

Naturally, these Ai would be different fro F ;I! 0, but 
this does not matter to us in the sense that the coef­
ficients (39) would then become invariant and the hyper­
fine structure of the doublets would remain unchanged. 
A change of Ai changes only the populations of the dif­
ferent doublets at a specified sufficiently low tempera­
ture T, and this is suitably reflected only in the inten­
sity of the lines of the summary Mossbauer spectrum. 

We present the values of the components of the 
hyperfine-interaction tensor for the three doublets of 
the Hamiltonian (40): 

A}l) = A~'1 = A,!'1 = A~'1 = -jT5A, A~'l =A!'>= 3A, 

A!'> = A~'l = A~'l =A. 
(41) 

In this case the small random fields will smear out the 
spectra from all three doublets, and therefore Fig. 3 
shows directly the summary spectrum in a stabilizing 
field perpendicular to the wave vector k of the gamma 
quanta. (We shall henceforth show in the figures only 
the spectra in stabilizing magnetic fields H .1 k.) 

Case (b'): qJ = 3n/ 4, r = 1/ ..f2 (point b' in Fig. 1 ). It 
is easy to verify that this case is exactly equivalent to 
the just-analyzed case {b). 

-60 -~0 -20 0 20 w 60 
Velocity in units of r, 

FIG. 3. Mossbauer spectrum cor­
responding to the Hamiltonian of 
crystal field ( 40), in a stabilizing 
magnetic field H 1 k. 

j, ~,., FIG. 4. M=b>u'"''"'" fm tho doub­
§ YTnrr~ lets r<n and r<2> of the Hamiltonian (42) 
~ in a stabilizing magnetic field H 1 k. 

, H•k r131 
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Let us consider the following case of interest: 
c): qJ = n/3, r = 1/..f2 (see Fig. 1). It is easy to 

verify that in this c~se only the coefficients c~g = 1/ ..f2 
and c_1; 2 = (1/..f2)ela differ from zero, and the Hamil­
tonian !MCF is given by 

!McF = A,+ A,jjo<•> +A,+ A, o;•> - )'14 (A,- A,) (o!'~- 0~~ ). (42) 
84 70 210 

A comparison with (38c) shows that (42) corresponds 
to a surrounding of cubic symmetry with axially­
symmetrical distortion along the trigonal axis of the 
cube. Neglecting F·, we find that a = - 18 D, A1, 2 

= -14a/27 ± (7'3 )a..f5, A3 = 28a/27. The components 
of the hyperfine-interaction tensor for the three 
doublets of the Hamiltonian (42) are 

A!"= A~l) = 3A/2, A~11 = A;l) = 3A/2, A~'1 = i:> = 2A, 

A;'~= A!'l = 0, A~•> = 3A. 
The Hamiltonian (42) corresponds also to the point c 
in Fig. lb. The Mossbauer spectra for the doublets 
r< 1> and r< 3> are shown in Fig. 4. 

Let us consider the following case: 
(d): qJ = n/2. For this angle qJ we can readily find 

that r 1 = 1/-/2, y1 = 0, r~ = (1- 2r 2 )/2, y 3 = n/2, from 
which we obtain the following non-zero coefficients 
chi and b~m: 

b <•> )'14 ·~ +A ) , = 105 rr,e' (A, , . 

Let at first A1- A2 = 0. It is clear that then £>cF 
should be a sum of terms with D, F, and a. We put, 
as before, F = 0 and stipulate in accordance with 
(38a) that b~4>/b~41 = .f57I4. This gives rise to two 
possibilities: 1) r 2 = 7'12, {3 = 0 and 2) r 2 = Ys2, {3 = n. 
We easily see from the expression for b~21 that case 
(1) corresponds to the Hamiltonian of the crystal field 
of pure cubic symmetry. In case (2) we have 

3(0,=- ~ (A1 +A2)0~'1 -A1 ~:· [o~''+{ ~4 (0~'1 +0~)](45) 
which corresponds to cubic symmetry with axially­
symmetrical distortion along the [1, 0, 0] axis of the 
cube. Then a = 0'4 ) D. The condition A 1 - A 2 = 0 
denotes that At = A2, and thus, the eigenstates of the 
Hamiltonian (45), as well as the Hamiltonian for the 
purely cubic field, are a quartet and a doublet. We 
shall not consider this case in greater detail, since the 
presence of the quartet calls for a special approach. 
In particular, for the quartet we cannot use formulas 
(7) for the component of the hyperfine-interaction 
tensor. 

Let now A1 - A 2 ;I! 0. Then, obviously, we should 
stipulate thatXcF correspond to a field of cubic sym­
metry with distortion along the [1, 1, 0] direction of 
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FIG. 5. Hyperfine-structure spectra in the cases (d') and (d") in a 
stabilizing magnetic field H 1 k. 

the cube, or in other words, satisfaction of the relation 
(see, (38b)) 

b~') /b~') =- l'10, b~') /b~') =- 315/14. (46) 

An analysis of the second equation of (46) shows that 
two situations are possible: (d') r 2 = (139 + 14-146)/916 

( 
II 2 .IA7'f\ " J 

{3 = 1r and d )r = (139 - 14v 46!1916, {3 = 0 (see the 
corresponding points in Fig. 1). In both cases the 
Hamiltonian of the crystal field has the form (37b) with 
F = 0 and Yecub described by relation (38b ). The 
parameters of the Hamiltonian dt?CF and the compon­
ents of the hyperfine-interaction tensor are then equal 
to: 

in case (d') 

a= -0,1118(A, +A,), a= 3.2347D, D = -3,0753E, 
(1) <•> (!) (!) 

A. =A, = 1,5960A, A. =A, = 2,2355A, 

A, <•L A.<~= 2,3605A, A,<'~= A;•> = 1,0433A, A~'> = 0.9135A; 

in case (d 11
) 

a= 0.0659(A, +A,), a= -0.8347D, D = 0.5420E, 

A.<•> = A,<'>= 4.8482A, A~'> = A~'> = 1.3185A, 

A,<•>= A.1'>= 0.5297A, A~•> =A;>;)= 0.6153A, A;•> = 4.2306A. 

The Mossbauer spectra corresponding to cases (d') 
and ( d 11

) are shown in Fig. 5, see the points d' and d 11
• 

6. CONCLUSION 

As seen from the preceding section, the general 
method developed in this paper makes it possible to 
find l'elatively simply a number of concrete crystal­
field Hamiltonians that give a "degenerate" hyperfine 
structure. On the other hand, it was shown in Sec. 4 

that in the case S = % there exist an infinite number 
of Hamiltonians of general form admitting of such de­
generacy. However, if the Mossbauer ion is in the S­
state, then the class of the Hamiltonians XcF is al­
ready limited per se. Thus, for the trivalent ion Fe 3 • 

( S = Y2) the most general Hamiltonian used for the 
interpretation of the Mossbauer spectra and the EPR 
spectra is the Hamiltonian of the type (37). In this 
case, as can be readily shown, the degenerate spectra 
of the hyperfine structure will correspond on the 
( r, cp) diagrams not to regions but to individual lines. 
If furthermore we recognize that the term with F in 
(37) is as a rule much smaller than the remaining 
terms and can be neglected in the first approximation, 
then only individual points will correspond in this case 
to '"degenerate" spectra. 

This circumstance gives reasons for hoping that 
there exists for the Fe 3 • ion only a finite number of 
cases with ''degenerate'' hyperfine structure. However, 
the general analysis in this case is quite complicated. 
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