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The energy and decay probability of a particle in a short-range force field and in crossed electric 
and magnetic fields are calculated. The electric field is considered to be small compared with the 
atomic field. With increase of the magnetic field strength, the decay probability decreases and 
vanishes at a certain value of the magnetic field strength. The pre-exponential factor, which de­
scribes how the decay probability vanishes, is calculated. Ionization in the case of an alternating 
magnetic field is also considered. In weak electric and magnetic fields the energy level shift in a 
o well is additive with respect to the fields. The electric field decreases the particle binding energy. 

INTRODUCTION 

THE present paper is devoted to consideration of a 
particle with low binding energy in perpendicular and 
homogeneous electric and magnetic fields. Such a 
problem arises, for example, in the study of ionization 
of highly-excited atoms or negative ions moving in a 
strong magnetic field. In a coordinate system con­
nected with the moving particle, there will exist be­
sides the magnetic field also an electric field, perpen­
dicular to the latter and smaller in magnitude. Under 
the influence of the electric field, the electron can be­
come detached by tunneling through the potential bar­
rier. This process has come to be known in the litera­
ture as Lorentz ionization. A review of earlier papers 
on Lorentz ionization and an indication of possible 
technical applications of this process can be found 
in Pl. In theoretical papers devoted to Lorentz ioniza­
tion (seeC2l), account was taken only of the electric field 
that appears in the coordinate frame connected with the 
particle; the magnetic field was not taken into account. 
Under certain conditions, however (for example, at low 
velocities), it is not permissible to neglect the mag­
netic field. As will be shown below, the magnetic field 
can lead to a complete stabilization of the particle when 
tunneling is impossible. 

Another example of the problem in question is the 
processes of tunneling in semiconductors in crossed 
external and magnetic fields investigated by Aronov 
and Pikus(3l; these processes can be influenced by 
weakly-bound excitons or impurity states. Unlike the 
Lorentz ionization, a case in which the electric field 
exceeds the magnetic one can occur here. 

The problems analyzed in the zero-radius-potential 
approximation, in which the successive consideration 
of the wave function in the potential well is replaced 
by the boundary condition 

"' 1(1 1) i' =- --- as r-+0, 
4:£ ,. c 

(1) 

where a = 1/ao is the scattering length of the particle 
and determines its binding energy in the o well in the 
absence of the electric and magnetic fields. For a 
particle with mass m this energy is equal to Eo 
= -fi 2a~/2m. 

We note that the condition (1) is valid in our case 

of a homogeneous magnetic field whose vector poten­
tial is equal to zero at the point where the o potential 
is concentrated ( r = 0 ). The general case of a vector 
potential that differs from zero at this point was con­
sidered by Adamov, et alY1, who also gave the corre­
sponding boundary condition, 

In such an analysis, the problem actually reduces 
to determination of the Green's function of the corre­
sponding equation. This method was employed 
earlier[s,e] in the study of a particle with small binding 
energy in an electric or magnetic field. The present 
paper is a continuation of[s,eJ. In Sec. 1 we derive an 
equation for the determination of the particle energy. 
In Sec. 2 we consider the case of electric and magnetic 
fields when decay is possible and the state of the parti­
cle in the well is quasistationary, while the ratio of the 
fields is such that the system is far from complete 
stabilization. We calculate the level shift and its width 
as functions of the fields. The level shift and its width 
are calculated by us in a unified fashion as the real 
and imaginary parts of the integral in (4). The level 
shift is additive with respect to the fields. The ioniza­
tion is considered for an electric field that is small 
compared with the atomic field. This case is important 
also because a weak electric field broadens the levels 
insignificantly and makes them amenable to spectro­
scopic observation in semiconductors[ 7l, We calculate 
the dependence of the ionization probability on the 
magnetic field as a consequence of its influence on the 
exponential factor as well as on the pre-exponential 
term. The magnetic field stabilizes the system and 
decreases the decay probability, since by bending the 
trajectory it increases by the same token its sub­
barrier part, leading to a growth of the effective thick­
ness of the barrier. 

In Sec. 3 we consi.der the opposite case of a station­
ary level far from decay possibility. We calculate its 
position in crossed fields. In particular, when the 
magnetic field is a perturbation relative to the field of 
the o potential, the level shift turns out to be the same 
as in the presence of decay, and is also equal to the 
sum of corrections necessitated by each of the fields. 
As to the binding energy of the particle, the electric 
field causes it to decrease, compensating by the same 
token for the anti-diamagnetism effect considered in[ 6J, 
In Sec. 4 we consider intermediate ratios of the elec-
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tric and magnetic fields, at which the quasistationary 
state approaches the threshold of complete stabiliza­
tion; this should lead to a decrease of the particle ioni­
zation probability to zero, so as to leave the level sta­
tionary with further increase of the magnetic field. The 
analytic result confirming this statement is obtained 
by solving the Schrodinger equation by the quasiclassi­
cal method. 

The concluding Sec. 5 is devoted to ionization in an 
alternating magnetic field in the adiabatic case, when 
its frequency is small compared with the Larmor fre­
quency. By comparison with the results obtained in 
Sec. 2 for a constant field, it is shown that the oscilla­
tions of the magnetic field decrease its stabilizing ac­
tion. The results are discussed in the conclusion. 

1. EQUATION FOR THE DETERMINATION OF THE 
ENERGY 

We consider a particle with mass m situated in the 
field of forces with a small effective radius, and also 
in homogeneous perpendicular electric and magnetic 
fields F and H; the electric field can be regarded as 
the sum of an external field and a Lorentz field. In the 
zero-radius-well approximation [s,sJ, the wave function 
\If of a particle with energy E in an electric field F 
directed along the y axis and in a magnetic field H 
directed along the z axis is a solution of the equation 

ell ii'¥ ( e'H' 2meF 2mE) (2) V''¥+?i-y-+ --y'+--y+-- '¥=-ll(r). 
- ftc iix lt'c' h' It' 

The corresponding gauge is chosen from considera­
tions of convenience in calculating the current, since 
one component of the vector potential differs from 
zero in such a gauge. Thus, the wave function of the 
problem coincides with the Green's function of a parti­
cle in crossed fieldsu. 

Inasmuch as in condition (1 ), from which we shall 
subsequently determine the energy spectrum, we can 
approach the origin from any direction, particularly 
along the direction of the magnetic field, we confine 
ourselves in the function ft to its dependence on the z 
coordinate. We have obtained for equation (2) a solu­
tion that depends on one coordinate z in analogy with 
the case of one magnetic field[ 6J directly from the 
spectral expansion of the Green's function, in the form 

~ dx ( a.'i..' s' z' 
'¥(0 z)= -i(4ni)-'l·j.,-ls . expi --x---x+-

' , x't•sin(x/2) 4 i..' i..'x 

s• x) +-x'ctg-
2i..' 2 ' 

(3) 

where ol = -2mE/fi2 ; A.= (eH/2fict 112 is the Larmor 
radius; s = mc2F/ eH2 is the distance from the center 
of the parabolic potential well characteristic of 
crossed fields to the origin. 

Separating in the function (3) the part that diverges 
as z -0, and substituting this function into the condi­
tion (1), we arrive at an equation for the determination 
of the energy 

!)When the manuscript was being readied for the printer, the authors 
learned of a paper by Magarill and Savvinykh [8 ], in which the corre­
sponding Green's function is given. 

X 

~ dx 2 a'i..' s' 
- a,i. =- ai.. -(in)-'h J-;~[ sin(x/2) expi ( --4-x-J:'x 

s' x ) ( a.'i..' ) ] + 2i..,x'ctg"2 -exp -i-4-x , 

where ao = -2mE 0 /fi 2 • 

Before we proceed to solve this equation, let us 
discuss the characteristic features of the problem. 

If the particle was in a bound state with energy Eo 

(4) 

= -fi 2a~/2m in the absence of both fields, then when 
the fields are turned on the particle's behavior will 
vary with the ratio of the electric and magnetic field 
intensities. Outside the well, the particle moves only 
under the influence of the fields F and H, and its mo­
tion along the magnetic field remains free, As a result 
the energy spectrum of the particle outside the well is 
continuous, and in a magnetic field weak in comparison 
with the atomic field the spectrum, as will be shown 
subsequently, has an end point at ~ ~ -mc2F2/2H2 • The 
electric field causes the system to decay, and in our 
case, at sufficiently large values of this field (I Eo I 
< 1 E I), the level in the well is against the background 
of the continuous spectrum. The particle is then able 
to tunnel under the barrier from the o well to the out­
side. Thus, in the case when the action of the magnetic 
field on the particle is weaker than the action of the 
electric field, it is necessary to consider both the 
shift of the level Eo in the fields, and its width result­
ing from the ionization of the corresponding quasista­
tionary state. The possibility of such an ionization was 
noted by Hiskes[2J, and its probability in the quasi­
classical case was calculated with exponential accuracy 
by Kotova, Perelomov, and Popov[BJ by the method of 
Feynman integrals, generalized to the case of imag­
inary time. 

The magnetic field stabilizes the particle, and 
therefore in our other case, when its action prevails 
over the action of the electric field and there is no 
possibility for a decay (I Eol >I.:; 1), one should speak 
of the shift of the stationary state of the particle in the 
magnetic field by the electric field. 

We introduce the parameter 

v = lEo/ ei v. = lta,H / mcF, 

which characterizes different regimes of particle 
motion. When y < 1 decay is possible and is the more 
probable the smaller y. In the case of y ~ 1 there is 
no possibility for decay, and large values of y corre­
spond to more stable states. 

2. QUASISTATIONARY STATES y ~ 1 

Let us consider states whose quasistationary char­
acter is due to the possibility of system decay. The 
electric field is regarded as weak compared with the 
atomic field (the ionization has then a quasiclassical 
character) and sufficiently strong compared with the 
magnetic field so that the small stabilizing influence 
of the latter leaves a possibility for the decay of the 
system. The quasiclassical character of the process 
makes it possible to calculate the integral in (4) by the 
saddle-point method. The saddle points are determined 
from the equation 
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( ~ ) ' [ 1 + ( ctg ~ - ~) '] =-v', 

V = liaH I mcF =at.' i 2so 
(5) 

Equation (5) coincides with the equation for the instant 
of the emergence of the particle from under the bar­
rier, which determines the exponential factor, con­
sidered in[ 9J, of the decay probability2l. 

In order to retain the analytic form of the calcula­
tions that follow, we confine ourselves to small values 
of the roots of this equation. Taking the first two 
terms of the expansion of cot (x/2), we find a solution 
of (5) in the form 

Xo = -2i')'(1 + ')'2 / 18) 

and valid under the condition 

v<;;; 1. (6) 

As a result of the expansion of cot (x/2) near the 
saddle points Xo « 1, the integral in ( 4) takes the 
form of an Airy integral, in which the role of the large 
parameter ensuring the possibility of using the saddle­
point method is played by the quantity 

I 

2s'v' I f.'~ 1. (7) 

An integral of this type was investigated in( 10l, The 
integration contour consists in our case of a segment 
of the imaginary axis from the origin to the saddle 
point, and then of a branch of a hyperbola leading to an 
infinitely remote point. Calculation along the imagi­
nary axis gives the real part of the integral, which 
determines the level shifts, and calculation along the 
hyperbola gives its imaginary part, which determines 
the level width or the particle ionization probability. 
Substituting the results of the integration into (4), we 
obtain an expression for the complex energy of the 
particle in the field of a well of small radius and in 
crossed electric and magnetic fields: 

(8) 

f(F,H) =lEo I~( 1- i.) exp[- }'__ F, (1 + .i)] 
2F, 6 3 F 30 ' 

(9) 

Fa= h 2 aVem is the atomic field. 
The result is valid when conditions (6) and (7) are 

satisfied; these can be written respectively in the form 

v=wL/w,<;;;1, FiF,=w,/2w,<;;;1, (10) 

where wo = hag/2m is the atomic frequency, wt 
= eF/nao is the frequency of tunneling through the 
barrier, and WL = eH/mc is the Larmor frequency. 

The level shift in (8) turns out to be equal to the 
sum of the corrections arising respectively in the 
electric(sJ and magnetic[aJ fields. 

It is seen from (9) that the magnetic field, by de­
creasing both the pre-exponential and the exponential 
factors, leads to a decrease of the level width r, i.e., 
it exerts a stabilizing action on the system. The sta­
bilization is due to the bending of the sub-barrier tra­
jectory of the particle, and consequently to the increase 
of the effective thickness of the barrier by the mag­
netic field. 

2)This circumstance was made clear as a result of a discussion with 
Yuo No Demkovo 

3. STATIONARY ENERGY LEVELS y >> 1 

We consider another case, when the stabilizing ac­
tion of the magnetic field on the particle is stronger 
than the ionizing influence of the electric field. It is 
meaningful here to speak of stationary states of the 
system. When separating the diverging part of the 
wave function IJI(O, z) (3), we use the Euler formulas 
for cosec (x/2) and combine the terms linear in x in 
the argument of the exponential. Assuming the ratio 
s 2/A.2 to be small, we take into account the first two 
terms of the expansion of the exponential containing 
cot (x/2) in powers of this ratio. Following( a), we can 
express the result in terms of the generalized Riemann 
' functions. Using the recurrence relations given for 
the latter in [a), we reduce ( 4) to the form 

-a,A.=s(~.o:'A.')+~[z"(2 a'"') (11) 
2 4 8),' b 2 ' 4 

( _a'A.') ( 5 o:'A.')] + 1 -2- 1; 2'_4_ ' 

where 
-2 z sz 2 
a =a +4-+-A.' A.'' 

, 2mE 
a=---

1!' 

As shown in ( 61 , the case a 2 A 2 >> 1 is realized for 
ao > 0 when there is a bound state in the well in the 
absence of a magnetic field; the case a2A 2 « 1 is 
realized for ao < 0, when there are no bound states 
without a magnetic field. In either case a 0 A. >> 1, i.e., 
the Larmor radius is much larger than the dimensions 
of the electron cloud in the absence of the field. We 
shall call such a field weak compared with the atomic 
field, and strong if it satisfies the opposite criterion 
aoA « 1. Let us consider different limiting cases. 

1) ao > 0, aoA ::?> 1. 
Using in (11) the expansion of the ' functions in the 

region of large values of the argument(sJ, we obtain 

a,'A.' = a'A.' + 1 8s' 
3A.'(a' + 4s'/A.' + 2/A.') 3a'A.'' 

or, changing over to ordinary units, 
me'F' e'H' 

E=E,---+i--::-:---:-
8n'a,' '24mc'a,' 0 

(12) 

In addition to the inequality a 0 A >> 1, expression (12) 
calls for the satisfaction of a condition inverse to (6 ): 

v~t. (13) 

Generally speaking, the condition y >> 1 can be ex­
panded also to y > 1 by taking into account terms of 
higher order in s 2/A. 2 or by numerically calculating 
the integral in (4). 

We note that expression (12) coincides with the real 
part of the energy (8) in the case of a quasistationary 
state. 

2) ao<O, lao! A» 1. 
Expanding in (11) the ' functions in the region of 

small values of the argument(aJ, we obtain 

2 4 [ " ( 1/ ) 3 _, 
a'+--,;-=-- 1 +_':__-'-+-s'a 'A.'] 

A,- a,'A.' a,A. 16 ° 0 

The left-hand side gives us the binding energy of the 
particle 8 = -E + tieH/2mc, which is thus equal to 
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e'H' [- . 146 3 -' 
/5' = ----- 1 +--' -+-s'a 'X' 

2n"·'ao' ja,jA. 16 ° ] (14) 

The obtained expression is valid under the conditions 
I ao I )1. » 1 and s2a~)l. 3 « 1. The inequality (13) is a 
consequence of these two. The electric field decreases 
the binding energy of the particle, and prevents the 
antidiamagnetic energy shift considered in[ 6l. 

3)ao=O. 
The left-hand side of (11) is equal to zero, and it is 

necessary to find the root of the right-hand side. This 
is easily done by using the approximate formulas for 
the {; functions r 5 1, as a result of which we get 

1 a'A.' .. _ 1 s' 
-::-;;:-;- = -4-+ -2 - .. 2 ' 
a.. " 

or 

heH heH me'F' 
<'t= -E+--=0.29---0.70--. 

2me me 2H' 

Formula (15) is valid for s 2/)1. 2 « 1. 
4) ao-any strong magnetic field. 

(15) 

In this case the right-hand side of (11) must be 
expanded in the vicinity of its root. Calculations ana­
logous to those in[sJ give for the binding energy the 
expression 

neH 
<t = -(0.29 + 0.24a,A. + 0.11ao'A.') 

me 
me'F' 

- ?f/2(0.70- 0.26a01c- 0.11a,'1c'), (16) 

which is valid for a 0 )1. « 1 and s 2/)1. 2 « 1. 
In the last two cases of a strong magnetic field, the 

electric field also decreases the binding energy. The 
same takes place when the electric field acts on a 
Coulomb particle in a strong magnetic field[ 11l. 

4. TRANSITIONAL CASE y ::::: 1 (Eo ::::: € ) 

We now consider the case when the end point of the 
continuous spectrum € = -mc 2 F 2/2H2 lies close to and 
somewhat below the level Eo in the 6 well. The 
parameter y =I Eo/€ 1112 is then somewhat smaller 
than unity. With increasing ratio H2/F2 , the end point 
of the continuous spectrum approaches the level E 0 , 

and when the two coincide one should expect the width 
of this level, due to the tunneling of the particle into 
the region of infinite motion, to decrease to zero. The 
vanishing of the width should occur at a value y = 1. 
At larger values of H2/F2 (y > 1) the end point of the 
continuous spectrum turns out to be higher than the 
level in the 6 well, there is no possibility for its decay, 
and it remains stationary. 

Unlike for the limiting values of y, for the values 
y :=::: 1 of interest to us it is impossible to obtain a 
solution of the general equation in analytic form. To 
calculate the decay probability of the level in the 6 
well in crossed fields we therefore use the quasi­
classical method of solving the Schr'odinger equation. 
This method, used to calculate the ionization in a weak 
electric field F « F o[ 121, is applicable also in the 
presence of a magnetic field, since the latter increases 
the thickness of the barrier, leaving the tunneling 
quasiclassical. 

To calculate the ionization probability in the quasi­
classical case it is necessary to find the solution of 
the homogeneous equation (2) near the direction of the 
electric field parallel to the y axis[ 131 • We use for 
this purpose the parabolic coordinates 

y = (s-1']) /2, z = (s11)"'cos<p, x= (s11)"'sincp, 

in which the condition for proximity to the y axis 
takes the form Til~ « 1. Changing over in (2) to the 
parabolic coordinates, we can easily show that the 
condition 11/ ~ « 1, and also the fact that we are con­
sidering an s-state in a 6 well, enable us to neglect 
the paramagnetic term in this equation. Then the 
variables separate and the solution of the homogeneous 
equation (2) at 11/~ « 1 can be represented in the 
form 

'~' = (2ns1'J)"'f,(s)f,(1'J), (17) 

with the functions f 1 and f2 satisfying the equations 

11 ( A 1 a' ) ( ) 0 f, + -+--·- f, 1'] = ' 
1'] 41'] 2 4 

where A is the separation constant. 
The wave function of a particle in a small-radius 

well 
( ao \ 'I• e-~,r 

'l'o= - --
2n I r 

has in the region Tl « ~ the form 

1 
'¥, = 2 )'I /to(s)/,(1']), 

where 
( ns11 • 

fto(G) = (4a0 )'/Je-~olf'£-V•, 

/zo (1']) = 1] 'i•e-"•"12• 

(19) 

(20) 

(21) 

(22) 

Since Eq. (19) does not contain an electric or a 
magnetic field, its solution f2 ( 1J) can be the unperturbed 
function f20( lj ), substitution of which in (19) makes it 
possible to determine the meaning of the separation 
constant A = ao/ 2. 

The potential energy in (18) is a parabolic well with 
center at a sufficiently remote point 

so= 2mc'F / eH', 

perturbed by the Coulomb term A/~. The particle 
tunnels into this well, the minimum of which lies in 
the region of negative energy, from a 6 well localized 
at the origin and separated from the parabolic well by 
a broad barrier. During the tunneling process the 
magnetic field causes the particle to twist and then 
tunnel further in a direction perpendicular to the 
directions of the electric and magnetic fields, in our 
case in the x-axis direction. Thus, if the particle has 
tunneled into a parabolic well near the ~ axis, i.e., 
along directions for which the barrier thickness is 
minimal, then after twisting the particle again returns 
to the barrier in a region much farther away from the 
~ axis, and will be forced to tunnel back into the o 
well along trajectories for which the barrier thickness 
is much larger than in the case of a straight-line 
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motion. Consequently, the probability that the particle 
will return to the o well can be neglected, making it 
possible to assume that the ionization probability is 
proportional to the probability for the appearance of 
the particle in the center of the parabolic well at the 
point ~ = ~o. 

The wave function of the particle in the region of 
the parabolic potential should be chosen to be a solu­
tion of (18) in the region of large ~ ; this solution in­
creases towards the origin: 

_ c { (s-6.)'} (23) f, (s)- ( a/2) ,1, exp 4~;, . 

The ionization probability is determined by the 
formula 

W = J v'l''(cp, t], s = ~,)dS, 

in which v is the particle velocity and the integration 
is carried out over a plane perpendicular to the ~ 

axis, the element of which is dS = ( Y2)~dqdcp. Using 
the explicit form of the function (17) expressed in 
terms of f20(q) (22) and f 1(~ = ~ 0 ) (23), we obtain for 
the ionization probability 

W = vC' /a'. (24) 

We determine the coefficient C from the condition 
that the function of the particle in the o well (21) coin­
cide inside the barrier with the function (23) continued 
into this region. Such a continuation, satisfying Eq. (18 ), 
must now be carried out with the Coulomb term taken 
as the perturbation. The continuation of the function 
(23) to the interior of the barrier can be represented 
in the form of the quasiclassical solution of (18): 

( a' e'H' meF A ) '/, 
p(x)= -----x'+--x--

4 16/t'c' 4/t' x ' 

and ~ 1 is the nearest turning point. 

A=~' 
2' 

(25) 

Carrying out the integration in (25), we obtain for f 1 

inside the barrier 

f,(£)=--c-e-•'1'£-"' ( ?s•Y' )'!. 
(a/2)'h "ji1-y' 

xexp aso (1+ 1-y'ln 1-y ). 
4 2y 1 +v 

A comparison of the result with (21) enables us to 
determine the coefficient C. Then substituting this 
coefficient in (24), in which we must put v =Iia0 /m, 
we obtain a final expression for the ionization proba­
bility of a particle in the field of small-radius poten­
tial forces in crossed electric and magnetic fields: 

(26) 

G(y) =-3-(1 + 1-y'ln 1-y). 
2y' 2y 1 + y 

(27) 

For the integration in (25) we used the condition 
a/~ « a 2/ 4, which makes it possible to regard the 
Coulomb term as a perturbation, and also the inequali­
ties UY 2~o « 1 and ~h~o « 1. These inequalities 

determine the conditions for the applicability of 
formula (26), one of which is contained in (10): 

F/F.~1, 

while the other 

WL / Wo~ 1 

is a consequence of the inequalities in (10 ). In particu­
lar, in Eq. (2), written in parabolic coordinates, the 
last parameter is the proportionality coefficient pre­
ceding the first derivatives in the paramagnetic term. 
The smallness of this parameter makes it possible to 
neglect these derivatives in comparison with the first 
derivatives in the Laplace operator, which have unity 
as a coefficient. 

The expressions for the decay probability were 
obtained by us under the condition WL << w 0 , i.e., for 
the case when the energy of the zero-point oscillations 
in the magnetic field nwL/2 is small compared with 
the binding energy of the particle in the o well I Eol 
= liw 0 • Since the latter is, in turn, always smaller in 
the case of decay than the shift of the end point of the 
continuous spectrum, we can neglect in the latter also 
the quantity nwL/2 and assume, as we have done, that 
the continuous spectrum begins the values of 
~ ~ -mc 2F2/2H2 • 

As to the parameter y, expression (26) is meaning­
ful for all values 0 s y s 1. At y « 1, the form of 
G(y) (27) is G ~ 1 + y2/5, as a result of which the 
exponential factor, which determines, in the main, the 
dependence on the magnetic field in formula (26), dif­
fers somewhat from the factor obtained in formula (9) 
as a result of direct integration in (4). The stronger 
dependence on the magnetic field in (26) is connected 
with the fact that in its derivation we have neglected, 
in the diamagnetic term of the Schrodinger equation, 
the compensating terms of order T)/~ and (TJ/02 , 

which had signs opposite to those included, but which 
prevented us from separating the variables. 

According to formula (26), the ionization probability 
in crossed fields decreases monotonically with in­
creasing parameter y and vanishes at the critical 
value y = 1. The vanishing of the probability occurs 
in accordance with the law 

IE, I F ( L'ie ) '/, 
Wo..e-+0 :=::::::: ---- - e-FofF, 

It 2F, e 

where fl.~ = E 0 - ~ is the energy deficit of the particle 
in the o well relative to the end point of the continuous 
spectrum. 

5o IONIZATION IN AN ALTERNATING MAGNETIC 
FIELD y « 1 

We consider the ionization of a weakly bound parti­
cle in an electric field crossed with an alternating 
magnetic field under the condition that the frequency 
of the magnetic field 0 is small compared with the 
smallest Larmor frequency in this case, 0 << wL. In 
this adiabatic case the value of ro can be obtained by 
averaging over the period of the magnetic field. As a 
result we obtain 
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F ( 2 F,) 
f 0 (F,H)=IEoi 2F, exp -3F <I.>(F,H), 

<I>(F,H) = e-• [I,(q)- ~~ (l,(q)-l,(q))], 

q = CtloCtlL' / 45Ctl,3 = li'a,'H' /90em'c'F', (28) 

and 10 and 11 are Bessel functions. In the case of the 
limiting values of q we have <I>q-o Rl 1 - q; <I>q- 00 

Rl ( 21T t 1/ 2 q- 112 • As expected, oscillations of the mag­
netic field decrease its stabilizing action, whereas at 
q » 1 the value of r (9) decreased with the magnetic 
field exponentially, like e-2q, the expression ro (28) 
decreases in this case in power-law fashion, like q- 112 • 

DISCUSSION 

Besides the limitations on the parameters of the 
problem that were given for each of the approximate 
expressions derived here, let us note the general 
criteria for the applicability of the small-radius-well 
model. One such criterion is the condition that the 
dimension of the electron cloud of the bound state 
greatly exceed the radius of the potential well r 0 • 

When a 0 > 0 this condition takes the form aoro « 1, 
and when a 0 < 0 we have r 0 / I a 0 I A2 « 1. The last in­
equality signifies that when a 0 Rl 107 cm- 1 the well 
dimensions are r 0 Rl 10-8 em and H « 10 8 Oe. Another 
criterion is r 0 /A « 1, whereby the radius of the 
Larmor orbit is much larger than the well dimensions 
ro. Putting r 0 Rl 10-7 em, we obtain H « 107 Oe. 

The decay probability calculated by the quasiclassi­
cal method in the transition region Eo Rl t, which 
vanishes when y = 1, agrees with the form of the spec­
trum of the quantum-mechanical problem and does not 
contradict qualitatively the results of calculations of 
the integral contained in Eq. (4). It should be noted 
that a similar pre exponential factor, which vanishes at 
a certain critical ratio of the electric and magnetic 
fields, was obtained by Aronov and Pikus[3l in an 
analysis of interband tunneling in crossed fields in 
semiconductors with narrow forbidden bands. 

The decrease of the level width as a result of the 
magnetic field, which was considered by us, was ob­
served experimentally in the form of a narrowing of 
exciton peaks in a study of the photo Hall photoeffect 
in a Cu20 crystal by Agekyan and Zakharchenya(14l. 

It follows from (9) that the ionization probability of 
a particle having the mass of the free electron and a 
binding energy Eo Rl 0.03 eV and situated in an electric 
field F = 180 V /em decreases by a factor of 20 when 
a magnetic field H = 360 Oe is turned on. From the 
stabilization condition y > 1 we can find that there 

will be no decay of a particle having the mass of a 
free electron and an energy Eo Rl 0.03 eV (a 0 

= 107 cm-1 ) in a field F = 104 V/cm if the magnetic 
field exceeds H = 105 Oe. 

The results can be applied to the now intensely in­
vestigated doped semiconductors placed in external 
fields, where bound exciton or impurity states are 
present. The ionization considered by us in an alter­
nating magnetic field can be taken into account, in 
particular, when plotting the differential magnetooptic 
spectra produced in the detection of signals at the fre­
quency of the alternating magnetic field. 

In conclusion, the authors thank Yu. N. Demkov for 
a number of valuable remarks and S. Yu. Slavyanov for 
interest in the work. 
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