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The possibility of formation of piezoelectric domains in nematic liquid crystals located in an electric 
field is considered. It is pointed out that domains are not produced in region (4) t 1 and t 11 are respec­
tively the nematic liquid crystal dielectric constants in the directions perpendicular and parallel to 
the molecular symmetry axis of the liquid crystal and k and e are the elastic and piezoelectric con­
stants). 

WE investigate in this paper the possibility of forma­
tion of piezoelectric domains in a nematic liquid crystal 
placed in an electric field. We show that the problem 
has a region of parameters in which no domains are 
produced. 

1. Meyer(lJ investigated the piezoelectric domains 
formed in the presence of an electric field in a nematic 
liquid crystal (NLQ). He established in his paper that a 
periodic structure (domains) with period 6. (see below) 
is produced in a piezoelectric NLQ under the influence 
of the field. In solving the problem, Meyer used the 
macroscopic theory developed inC2- 4J, according to which 
the energy of perturbation of a unit volume of the NLQ 
is, in the lowest order, a quadratic function of the grad­
ients of n(r), and is given by the expression 

H, = 112[ku(div n)' + k,.(n rot n)' + k,.[n rot n]' ], (1) 

where n is the unit vector describing the preferred 
direction of the molecule axes of the liquid crystal at 
the point r. In the presence of an electric field the en­
ergy of the system contains, besides the self-energy of 
the field and the perturbation energy (1), also two piezo­
electric terms: 47Te1(E · n)div n and 47Te2E[(n · V) x n] 
(seeC1J), where E is the electric field intensity. 

Meyer investigated the functional 

S( H- ~~) dV, 

where H is the total energy per unit volume and D the 
dielectric induction vector. We introduce the symbol 

H = H- ED/4n = 'f,[ku(divn)' + k,(nrotn)' 
+ k.,[nrotn]']- e,(En)divn- e,E(nV)n 

- 8~ [e.LE' +(e11 - e.L) (nE)'], 

(2)* 

where t 1 and t 11 are the dielectric constants of the NRQ 
in the directions perpendicular and parallel to the sym­
metry axis of the liquid- crystal molecules, respectively. 
The last term in (2) corresponds to the self-energy of 
the field in the expressions for the energy. 

The problem consists of minimizing the functional 
(iidV and solving Maxwell's equations. Meyer makes 

the following simplifying assumptions: 

ku = ks3 = k, et = -ez. = e, s 11 = e..!., Ev =Eo= const, 
E,=O 

*(n rot n)2 = (n·rot n)2 ; [n rot n] = n X rot n. 

and considers a planar model of the NLQ, namely 
n:x = c0s9, 

n. =sin 8, 0 = B(x), (3) 

where 6 is the angle between n(r) and the Ox axis. Then 

H=_!_k(de )' +eE,(d9 ). 
2 dx dx 

Minimizing this functional, Meyer obtains a periodic 
solution 6 = eE0x/k with period ll = 7Tk/ eE0 • 

Thus we see that the electric field produces a domain 
structure with a period fl. This structure vanishes with 
decreasing E0 , and the period tends at the same time to 
infinity. It turns out, however, that if a = t 11 - t 1 "¢ 0, 
then domains are not produced at all values of e and k; 
it will be shown below that in the region where 

I a I - e'n• I k > 0, (4) 
there is no domain structure and a homogeneous state 
is produced. 

2. We consider a planar model of the NLQ, introduce 
the notation (3), and make the simplifying assumptions 
kn = k33 = k, e1 =- e2 = e, but assume that a -.e 0. As 
indicated above,Jhe problem consists of investigating 
the "energy" J HdV and solving Maxwell's equations. 
Let us solve tliese equations: from curl E = 0 we readily 
obtain Ey = Eo= const, Ex = E(x); we consider further 
the equation div D = 0, where (see[lJ) 

D = e.LE + an(nE) + 4:rt{e1n div n + e,(nV)n} 

We put Dx = 0; then 

e.LE, + aE, cos' 9 + aE, cos 9 sin 9 = 0; (5) 

since usually a/t1 ~ 1, we neglect terms of higher or­
der in a/t 1; it then follows from (5) that 

E, = -aE, sin 28/2e.L. 

With the same accuracy, we write down an expression 
forH: 

1 ( d9 ) ' d9 e.LEo' ( a. . 2 ) H=-k - +eE,---- 1+-sm 9 . 
2 dx dx 8n e.L 
~ 

Minimizing H, we obtain 

ke, a.Eo' 
+~sin29=0. 

We consider first the case when a > 0. It follows 
from (7) that 

(6) 

(7) 
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8' =±)'A+ p cos 28. p = aE,' I 8nk, 

and A is the integration constant. We put A ~ p, and 
then the solution takes the form 

·s· d8 -- , 2p px= p=)'A+p, k, =--<1 
, l'1-k,'sin'8 A+p 

px = F(k,, 8,) 

( see[5J ). The solution is periodic with a period 

(8) 

T "" d8 

4 = J )'A + p- 2p sin' 8 . (9) 
Q 

We note that as A - p the solution approaches the homo­
geneous one, and accordingly T-oo, We have to find 
the minimum "energy" per unit length for the domain 
structure, i.e., the minimum of the expression 

l = J [: (8')' + eE,S'- ~~·'sin' 8 ]dx j J dx 

with respect to A (the integrals are taken over the per­
iod). Obviously, it is necessary to put sign e' =-sign e, 
and then we obtain after trivial transformations 

IC/Z n/2 de IC/'1. e 2 

U=J (kB'-IeiE,)dsJ 2(fl')'/ (S;,) , 
Q Q 0 

1T/2 
where e' > 0. Since J kB' dB is a monotonically in­

a 
creasing function of A at A ~ p, it is obvious that I will 
have a minimum at A ~ p only if 

r(kfl'-leiEo) IA~pd8<0 or a-:· n'<O. (10) 
Q 

If 
a - e'n' / k > 0 ( 11) 

then the homogeneous state with Bo = 1T/2 is more fav­
ored energywise (the value of 90 can be easily obtained 
from the expression (6) for H). 

Thus, if (10) holds true, a domain structure is pro­
duced and the solution is given in this case by expres­
sion (8), where k1, and consequently also A, can be ob­
tained from the expression 

Tks'dS= leiE'o~, E(k.) = ieiE,n, (12) 
Q 2 k, 2kj2p 

where E(k1) is a complete elliptic integral. 
The case a < 0 is perfectly analogous to the preced­

ing case; its investigation leads to the general condition 
(4) for domain formation, but the homogeneous state 

arising when A - p will be somewhat different, namely 
9o = 0. 

3. Let us consider some limiting situations. We note 
that if a = e 21r3/k the solution can be obtained in terms 
of elementary functions. Indeed, from (12) we get k1 = 1 
and A = p, and then (8) takes the form 

- 1' dB -
)'2p x = J or sin e, = th )'2p x. 

Q 
)'1- sin' e 

The period of the structure becomes infinite in this 
case. We see furthermore that as a - 0 the solution of 
(8) goes over into Meyer's solution (it is easy to obtain 
fA= le IE0 /k = 9') from (12)) with a period A. 

If the field is varied for a given substance, i.e., for 
a specified nonzero Ci, then, as seen from (12), k1 re­
mains unchanged, and A is proportional top or A~ E~. 
Consequently T ~ 1/fji ~ 1/Eo and we see that when the 
field is decreased, the period of the domain structure 
increases and tends to infinity, corresponding to a tran­
sition to the homogeneous state, and conversely, when 
the field increases, the period decreases and tends to 
zero. Formula (9) can then become incorrect if the 
period becomes of the same order as the microscopic 
distances characteristic of NLQ, since the chosen 
macroscopic approach no longer holds in this case. 

We note finally that the investigation of the planar 
model of NLQ leads to the following result: the domain 
structure is produced when (10) is valid, and the solu­
tion in this case is periodic with a finite period (see (8) 
and (9)). The parameter A can be obtained from (12). 
On the other hand, if (11) is satisfied and there are no 
domains, then a homogeneous state with e = canst is 
formed (?T/2 for a > 0 and 0 for a < 0). The results 
are valid in the region where the macroscopic theory is 
valid. 

In conclusion, the author is sincerely grateful to I. E. 
Dzyaloshinskii' for suggesting the problem and for guid­
ing the work. 
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