
SOVIET PHYSICS JETP VOLUME 35, NUMBER 1 JULY, 1972 

Nonlinear Interaction Between Waves in a Plasma with Random Inhomogeneities 

v. v. TAMOIKIN AND s. M. FAiNSHTEiN 

Radiophysics Research Institute 

Submitted March 10, 1971 

Zh. Eksp. Teor. Fiz. 62, 213-218 (January, 1972) 

The nonlinear interaction of waves in a plasma containing random inhomogeneities is considered in the quasihydrodynamic 
approximation. The fundamental equations are obtained for quantities averaged over the inhomogeneity ensemble. The con­
tracted equations for the amplitudes and phases of the interacting (transverse and longitudinal) waves in an isotropic plasma 
are investigated in the one-dimensional approximation on the basis of the asymptotic method. 

THE nonlinear interaction of waves has been studied 
in sufficient detail in application to a homogeneous 
plasma (see, for example, [1-41). There is undoubted 
interest in the generalization of the known results to 
the case in which the plasma is inhomogeneous. In par­
ticular, studies have been carried out in this direction 
for a regularly inhomogeneous plasma (see, for exam­
ple, [51). The effect of random inhomogeneities on the 
process of the nonlinear interaction of waves has not 
appeared in the literature to date, so far as we know. 
In optics, it is true that a number of questions (fre­
quency doubling, stimulated Mandel'shtam-Brillouin 
scattering, stimulated Rayleigh wing scattering, etc.) 
on the statistical theory of nonlinear processes have 
already had their development. [6• 71 In the present work, 
a systematic derivation is carried out of the equations 
for inhomogeneities in the electron concentration, av­
eraged over the ensemble of quantities that enter into 
the quasihydrodynamic equations for the plasma. On 
the basis of their asymptotic method, one-dimensional 
contracted equations are obtained for the amplitudes 
and phases of the interacting waves (transverse and 
longitudinal). An analysis of the various limiting cases 
is carried out. 

1. DERIVATION OF THE EQUATIONS FOR AVER­
AGED QUANTITIES 

The system of quasihydrodynamic equations de­
scribing the isotropic heating of the plasma to the 
temperature T has the form 11 

av e e llr1 

-+(vV)v=-E+-[vH]--gradN+G, (1)* at m me N 
aN 
Tt+divNv =0, 

1 aH 1 aE 4lte 
rotE +cat= 0, rotH- cat= -e-Nv, 

where E and H are the electric and magnetic fields, v 
and N are the velocity and concentration of the electrons 
of the plasma, e and m are their charge and mass, c is 
the velocity of light, vT = KT/m (K, Boltzmann's con­
stant), G is the external field that creates an inhomoge­
neous distribution of the electron concentration in the 
equilibrium state. This concentration can be written 

1>We considered the case of high-frequency fields, when the motion 
of the ions can be neglected. 

*[vHJ=vxH. 
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in the form 

N=N,+6N(x) +<N(x, t))+N'(x, t), (2) 

where N0 + liN(x) is the equilibrium value and liN(x) 
the random departure of the electron density from 
the mean value, which latter is equal to N0 • The 
quantity (N(x, t)) + N'(x, t) is the perturbation under 
the action of the electromagnetic field, which is 
represented in the form of the sum of the average over 
the ensemble (N) and the fluctuating part N'(x, t). The 
brackets in (2) indicate statistical averaging, the value 
of G = (vT /N0) grad liN(x). In what follows, the fluctua­
tions of N are assumed to depend on a single coordinate 
x (one-dimensional inhomogeneity). 

Representing the variables v, E, H in (1) in the form 
of mean values and their fluctuating deviations, and av­
eraging the system (1), we obtain the equations for the 
mean quantities 

i) e Vr2 V/' 
~v)--(E)+-grad (N)- -.-grad (N'IJN) at m N, 1V0 

e v 2 

= ((v)V) (vH -[(v)(H)] +-Nr (N)grad(N), 
me o 

a -<N>+ N, div(v)+ div(IJNv') = - div(N)(v), 
at 1 a 

rut(E)+cat(H)= 0, 

1 a 4lte 4lte ' 4lte 
rot(H)---0 (E)---N,(v)---(6Nv )= --(N)(v). 

e t e e e 

In the derivation of (3 ), it is assumed that: 
1) the wave perturbations and fluctuations of the 

electron concentration are small, I (N) I, IN' I, ION I 
«No; 

2) the nonlinearities are so weak that the complex 
amplitudes of the interacting waves are slowly changing 
(in the scale of wavelengths and periods of oscillation) 
functions of the coordinates and the time. 

The conditions 1) and 2) permit us to discard in the 
set (3) the nonlinear terms of the form ((v'v)v'), 
(efmc)(v'x H'), (N'v'), which are associated with the 
fluctuations and are smaller than the terms remaining 
in the right-hand sides of the set (3) by a factor of at 
least ((ON/N0 ) 2 ). 

We note that account of the small quantities (v' liN) 
and (N'IiN) in (3) is important, because, as will be seen 
from what follows, just such terms enter into the damp­
ing of the mean field. These terms are linear in the 
fluctuations. The equation for the fluctuating quantities, 
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if we neglect the nonlinearity (this is valid with accuracy 
((liN/N0 ) 2 ) « 1), takes the form 

av' e v' v 2 

- +- E' +-r-gradN' = -'-grad(6N(N)) at m N, No' ' 

1 aH' 
rotE'+ "7at = 0, 

, 1 aE' 4ne 4ne (4) 
rotH -------N,v'=--6N(v) 

c at c c ' 

aN 
iTt+ N, div v' =- div( (v)6N). 

As is usually done in the corresponding linear prob­
lem, [s,sJ small terms of the form N' liN - (IN' liN I) are 
also not taken into account. These would lead to the ap­
pearance4 of quantities of the order of ~ ((liN/N0 ) 3 ), 

((liN/N0 ) ), etc, on the left side of the equations for the 
mean field. Thus, the approximating system of equa­
tions (3) and (4), which allows us to obtain closed non­
linear equations for the averaged quantities, is valid 
under the conditions in which corrections ~ ((liN/N0 ) 2 ) 

are taken into account in the linear terms and are dis­
carded in the nonlinear ones. 

In the following, we shall consider the interaction of 
plane plasma and transverse waves propagating along 
the x axis (with dependence ei<wt- kx>). Therefore, for 
the problems of interest to us, we need the value only 
of the Fourier components of the terms in (3) associ­
ated with fluctuations of N: 

v 2 

v,(w,k) = ;.2 J grad((6N(x)N'))e-~·'-"">dtd.1:, 
v2(w,k)= J div(·~N(x)v')e-'<••->z>dtd.1:, (5) 

4ne J ,.,(w, k) = -c- (IIN(x)V')e-'<•'-"">dtdx. 

Substituting the solutions of the set of equations (4) 
and (5), and assuming that the correlation function of 
the fluctuations of N has the form 21 

(6N(x}IIN(x + s)) = ((<IN) 2)exp( -J sl I l,), 

we get 

< ( 6N ) 2) (kptl0 ) 2 
v,(w,kpt)= -iw(v.(w,kpi)) -N, 

1 + 2ikptlo 

+ ikptvr' < (ON)') (N(w, kpt)) [ 1 + ikptlo 1 + ikptlo ] 
N, N, 1 + 2ikptl0 ' 

V2\Cil,kpt)=N1 ( (IINN)')<t>.(w,kptl>[ikpt- w2l: 1+i~ptlo] 
o • o 2vr 1 + 2tkpil0 

where 

kem 

<( 6N) 2) '(ktl) 2 
+iw - (N(w,kpt)) Po , 

N, 1 + 2tkptlo 

.2:rr.e((IIN} 2) w02 
v,(w, kem) = t-, - , 2 • 

ell, N, w -w0 

- _k,=Ml..:,." (.:...,1,.,.+:----ik.,.:.em=!,) X(v,(w,kem)) 
1 + 2ikeml0 ' 

kpt= y~·- 2 4ne'N, 
C.Oo=--. 

Vr I m 

(6) 

The expressions (6) are valid for arbitrary relations 
among kpl. kern. and l 0 and can be materially simplified 

2lThe choice of such a correlation function is not a matter of principle, 
and is determined only by the simplicity of the mathematical calculations. 
For another form of d>N(x)c'lN(x + ~) >, the difference will be only in 
numerical factors of the order of unity. 

under conditions of small-scale (kpll0, kemlo « 1) and 
large-scale (kpll0, kemlo » 1) inhomogeneities. 

2. CONTRACTED EQUATIONS FOR THE AMPLITUDES 
AND PHASES OF THE INTERACTING WAVES AND 
THEm INVESTIGATION 

As was pointed out above, the nonlinearities in (3) 
are assumed to be small. Then, for the description of 
the interaction of two transverse (of one polarization) 
and plasma waves, which satisfy the condition of syn­
chronism [11 

kpt + k, = k,, CllpJ + Cll2 = Cllt (7) 
(the indices 1 and 2 refer to the electromagnetic waves) 
we can use the asymptotic method. [4 ' 10J However, the 
solution of the resultant set of equations for the slowly 
changing amplitudes A, B11 B2 and phases cppe. cp 1, cp 2 

of the plasma and two transverse waves, respectively, 
is difficult in the general case. 

Therefore, we consider the following problem: a 
plane electromagnetic pump wave with frequency w1 

and a signal wave with frequency w2, which can be found 
from the conditions of synchronism, are incident from 
the vacuum on a semi-infinite plasma. 31 We shall inves­
tigate the distribution of the electromagnetic field and 
the field of the excited longitudinal wave in the plasma. 
In the stationary case (o/ot = 0), the set of equations 
takes the form 

dA Opl Vpl 
- = -B,B, cos (fJ- -A, 
dx VpJ VpJ 

dB, a, v<'l 
-= --AB,cos(fJ---B., 

dx v, v, 
dB, a, v<2> 
- = -AB, cos (fJ- --B,, 
dx v, v2 

d(fJ = sin(fJ(!!.:. AB,_~~-+-~B,B,) 
dx v2 B, v, B, VpJ A 

(8) 

+ o.~ _ o~:l, -~ 
Vz v, VpJ 

Here 
ewo'kpt eku 

O'pt = , a,,,=--, (fJ = cp2- cp,- <Ppi, 
2mwpJW 1Cilz 2mw1,2 

Vpl and v 1,2 are the group velocities of the plasma and 
electromagnetic waves, llpl• ~~~~~, and li~m denote 
damping and phase shift, respectively, due to the pres­
ence of fluctuations of N in the medium. The specific 
form of these can be obtained from formulas for v1, v2, 

and v3 ; it will be given below in the various limiting 
cases. 

For simplicity then, we shall assume that the in­
equality 

&>,,, > w,. 
is satisfied. Then 

(9) 

3'The equations mentioned above can be analyzed also for stimulated 
Mandel'shtam-Brillouin scattering (SMBS), when the incoming signal 
wave is amplified. Of course, such a process of SMBS also takes place 
relative to thermal noise. However, we shall neglect it, inasmuch as condi­
tions can always be chosen for which the level of thermal fluctuations in 
the boundary layer of the plasma is sufficiently low. 
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Taking it into account that4> vpl = ~1v;./w0 « c, we 
have 

(10) 

i.e., for c 2/vT » w/w0 this ratio is large. Consequently, 
the amplitude of the plasma wave goes over rapidly into 
the "equilibrium" state (dA/dx = 0), which is deter­
mined by the relation 

A B,B,api 
= ---cos <II. 

Vpl 

Substituting (11) in (8) with account of (9), we get 

dB, a , O·pl , Y 
-=..,--B,B, -cos <II--B., 
dx v VpJ v 

(11) 

dB, 00P1BB' '"' "B -=-- 2 I COS -v-- 2, (12) 
dx VVp) V 

d!D <J<Jp) 2 2 • "pi 6pl -= ---(B, -B2 )sm2!ll---tg<II---. 
dx 2vvpl Vpl Vpl 

It is necessary to investigate this system in the phase 
space B1, B2, and if1, which presents significant difficul­
ties. Therefore, we limit ourselves to the approximate 
analysis of (12). In the equilibrium state, the phase if1 
"tracks" the amplitudes of the interacting waves 
(dif1/dx = 0). Here if1 is found from the equation 

tg~ [ <J<Jp~ VpJ (B,'-B,') ]-tg<II= 6PI. (13) 
1 + tg «<> \I pi v "pi 

As analysis shows, for Opl /vpl = 0 corresponds to stable 
equilibrium. The presence of fluctuations oN(x) shifts 
this state by an amount ~ Opl /vpl « 1, which we shall 
neglect. We estimate the conditions for which this is 
possible. 

In the case of small-scale inhomogeneities (kpllo 
« 1) the values of Opl and llpl are equal to5> 

Their ratio 

6pJ ~ ((bN I N,)')Wpl, (14) 

Vpl ~ 1/4((6N/N,)')(wo/kp1Vr)'w,(kpllo). (15) 

6p1 _ 4 (kpiVr) 2 

\lpl - kp1lo ~ ' 

as is easy to see, can be made rather small. We note 
that, in the opposite limiting case (kpllo » 1) the value 
of Opl /llpl is always small. Thus, the phase correction, 
associated with Opl /llpl. can be neglected with a great 
degree of accuracy. In Eqs. (12) for the amplitudes, 

4>In the quasihydrodynamic consideration, Landau damping is not 
taken into account, which is valid for kplvT/w0 <I [ 11 ]. 

5>In the limiting case of large-scale inhomogeneities kP1/ o> 1 the factor 
l/2 appears in Eq. (14) and the factor 1/4 is replaced by 3/8 in (15). 

this can even more readily be neglected, since it enters 
into the right hand side of (12) in quadratic fashion. 

Taking this into account, we can write the solutions 
of (12) in the form u2J 

~·= (1 + ~) e-"'" 
B,'(O) l~+exp[-y(1+~)(1-e-"'")]' (16) 

B,'(x) + B,'(x) = [B.'(O) + B,'(O)] e-••1•, 

where B1(0) and B2(0) are the values of the amplitudes 
of the fields on the boundary of the plasma x = 0; 

~ = B,',(O) , y = aap1 B,'(O). 
B, (0) vvpl 

The qualitative form of the distribution of the field am­
plitudes is shown in the drawing, from which it is evi­
dent that for large x the amplitudes of all the fields are 
damped, in contrast with the case of a transparent one­
dimensional medium, when reverse pumping of the in­
teracting waves exists. [ll 

We take this opportunity to express our thanks to 
A. G. Litvak and M. I. Rabinovich for discussions, and 
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