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A formula is obtained connecting the spin-lattice relaxation time in paramagnetic substances with the correlation functions 
(or their spectral densities) of a spin system and a lattice that are isolated from one another. This formula serves as a convenient 
starting point for the discussion of various relaxation models in which the essential role is played by spin-spin interactions. 
As an example, we have considered a system of interacting paramagnetic ions with effective spin S = 1/2, coupled to the lattice 
by the Kronig-Van Vleck mechanism. The dependence of the relaxation time on the magnitude and orientation of the external 
field is considered. 

INTRODUCTION 

SPIN-LATTICE relaxation in crystals is due princi­
pally to modulation by the lattice vibrations of the orbi­
tal motion of electrons of unfilled shells of paramag­
netic ions (the Kronig-Van Vleck mechanism). The es­
timate of the relaxation time on the basis of this mech­
anism usually reduces to the calculation of the transi­
tion probabilities between a small number of lower lev­
els of the paramagnetic io:n. [lJ However, such an ap­
proach ceases to be satisfactory at low temperatures 
at which single phonon relaxation processes dominate. 
This is graphically demonstrated by the fact that the 
dependence on the value of the external magnetic field 
of the type w ~ H4, predicted by the Van Vleck theory 
for the probability of dire<:t transition between states 
of the Kramers doublet, is observed experimentally 
more frequently as an exc•eption than as a rule. More­
over, at low temperatures, a dependence of the relax­
ation time on the concentration of paramagnetic ions 
and various anomalies of the temperature dependence 
are both observed. For th13 explanation of the observed 
peculiarities, the spin-lattice relaxation was proposed, 
to take into account the possibility of transfer of the 
energy of the spins to the lattice by means of a pair of 
ions coupled by strong exchange interaction, [21 or 
through other rapidly rela:dng centers. [31 Here refer­
ence can be made to the assumption of Peskovatskil'[41 

on the important role of the wings of the resonance line 
in the relax~tion process. It is not excluded that the ex­
change of energy between the spin system and the lat­
tice at low temperatures exists essentially because of 
other mechanisms of relaxation, for example, modula­
tion by the lattice vibrations of exchange interactions 
between the spins. [SJ In the arbitrary case, it is seen 
to be necessary to take explicitly into account the inter­
action of paramagnetic centers with one another, which 
materially complicates the· mathematical determination 
of the relaxation times. Therefor!;!, the latter is usually 
estimated as a quantity that is the inverse in some fash­
ion to the probability of relaxation transition of the in­
dividual paramagnetic ion, averaged over the spin sys­
tem; in this connection, the problem naturally arises 
of a more rigorous basis of such a semiqualitative ap­
proach. 
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In the present work, we shall assume that the rate of 
establishing internal equilibrium in the spin system and 
in the lattice (which is identified with the thermostat) 
considerably exceeds the rate of spin-lattice relaxation. 
In this case, as is shown in Sec. 1, the relaxation time 
can be written down in the form of a convolution of cer­
tain spectral functions pertaining to the spin system 
and to the lattice. The resultant formula reduces the 
investigation of the spin-lattice relaxation to the calcu­
lation of the correlation functions for spin system and 
lattice that are isolated from one another. In Sec. 2, it 
is shown that the spectral function of the spin system 
is expressed in simple situations in terms of a function 
of the shape of the resonance line. In the concluding 
section 3, the problem of the field dependence of the 
spin-lattice relaxation time is discussed. 

1. GENERAL FORMULA FOR THE SPIN-LATTICE 
RELAXATION TIME 

If the spin-spin interaction in the paramagnetic ma­
terial is much stronger than the spin-lattice interaction, 
then, after removal of the external perturbation, equi­
librium is first established inside the spin system and 
is then preserved while equilibrium between the spins 
and the lattice is being established. In this case we can 
introduce the spin temperature Ts, and the equations 
for the populations of the levels of the spin system be­
come the equations which determine the time change of 
the spin temperature. For not too low temperatures Ts 
and T (the lattice temperature), which exceeds, in the 
corresponding units, the splitting of the spin levels Wmn• 
the equalization of the reciprocal temperatures takes 
place according to an exponential law, and the relaxa­
tion time is [6 ' 71 

(1) 

The indices m and n denote the stationary states of the 
spin system, Wmn is the transition probability between 
the states m and n, due to the spin-lattice interaction. 

Equation (1 ), which was first proposed by Gorter, [eJ 

can be used very easily when the spin system consists 
of an individual paramagnetic ion. For a system con­
sisting of a large number of mutually interacting para-
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magnetic ions, it is impossible to find the stationary 
states and this formula becomes practically useless. 
We now alter it so as to connect the relaxation time 
with quantities which can at least in principle be inves­
tigated theoretically and experimentally. 

We write down the transition probability between the 
states m and n in the form 

Wmn = 2; I>AI(mA IJ16'.jnB) l'6(0lmn + WAB), (2} 
A,B 

where :Je, is the Hamiltonian of spin-lattice interaction, 
I A) and I B) are the initial and final states of the lat­
tice, and PAis the probability of finding the lattice in 
the state I A) . Further, 

LWmn(E.-Em) 2 

m,n 

---2:, '\' " LJ PA<mA I [d6's, J'et] I nB><nB I [d6's, J'et] I mA)Il(Wmn + WAB)' 
~~A~ (3) 

where d6's is the Hamiltonian of the spin system. We re­
call that in the writing out of Eq. (1), we used the high­
temperature approximation tiS?mn << kTs for an arbi­
trary pair of levels. In this approximation, the proba­
bility of finding the spin system in the state m has the 
form 

Pm = exp(- ~Em) /J.:exp(- ~E.)~ 1/Z, 

where (3 = ti (kTsr\ and Z is the number of states of the 
spin system. Keeping this in mind, we can introduce the 
factor Zpm in Eq. (3) under the summation sign. But 
then, by definition (see, for example, l8l), the right side 
of (3) is nothing else than the spectral function J for the 
operator [ J'6' s, d'6'i] : 

m,n 

and we arrive at the following expression for the re­
laxation time: 

_ 1 _ :n; ZJ([d'6's,O"e,], [.Yes,O"e,],O) 
't - -h Spd'6's' . 

(4) 

(5) 

The Hamiltonian of the spin-lattice interaction in the 
most general can can be represented in the form 

(6) 

where V a are the spin operators and Qa the lattice op­
erators. Making use of the delta function representation 

6(wm.+wA•)= J6(wm.+w)6(wAB-w)dw, (7) 

we rewrite Eq. (5) in its final form: 

·r-' = ~ '\' Jls( [O"es, V.], [Yes, V,], w)J,(Q., Q,,- w)dw, (8) 
SpO"es" LJ 

"·' 
where the spectral functions Js and Jz refer to the spin 
system and the lattice. The writing of the relaxation 
time in terms of the corresponding correlation func­
tions can be shown to be sometimes more useful: 

,;-' = z • '\' J <[O"es, V.] (t), [O"es, V,] (O))s(Q.(t),Q,(O)),dt. (9) 
2 Sp O"es LJ 

"' 

The expression for the transition probability of the 
individual spin in terms of the correlation function of 
the lattice variables is widely used in the theory of 
paramagnetic relaxation in liquids (see, for example 
c8J), where these variables are random functions of 
time. In application to spin-lattice relaxation in solids, 
the method of lattice spectral functions has been devel­
oped by Aleksandrov. [lOJ Equations (8) and (9) can be 
regarded as further generalizations of this method, as 
a result of which the spin variables in the expression 
for the spin-lattice relaxation times are also written 
down in the form of spectral densities of the individual 
correlation functions. In the following discussion, we 
shall concentrate our attention on this point, and we 
shall compute the spectral functions of the lattice vari­
ables with the help of very simple models. 

2. DISCUSSION AND EXAMPLE OF USE OF THE 
GENERAL FORMULAS 

In the derivation of Eqs. (8) and (9), we subdivided 
the paramagnetic material into a spin system and the 
lattice, but it is not necessary to mean by the lattice 
only the system of normal vibrations of the crystal. 
It can also be the system of conduction electrons and 
the system of rapidly relaxing centers-an arbitrary 
part of the thermostat, which is most tightly coupled 
with the spin system. Inasmuch as no special condi­
tions are superimposed on the mechanism of spin­
lattice relaxation, the resultant formulas can serve 
as the starting point for the consideration of quite 
varied relaxation models. 

As an example, we consider a system of identical 
paramagnetic centers with effective spin S = ]'2 in a 
crystal possessing cubic symmetry. We assume that 
the relaxations take place basically as the result of 
the Kronig-Van Vleck mechanism, and we shall de­
scribe the vibrations of the lattice in the long wave­
length approximation. Then the Hamiltonian of the 
spin-lattice interaction is written in the form 

J'e, = a(HS) (e=+ e,,+ e,) + b[(HS- 3H,S,) (e=+eyy-2e,) 
+3(HxSx- H,S,) (e=- e.,)] + c[ (HxS, + HySx) ex, 

+ (H,S,+H,Sx)e.,+ (H,S,+H,S,)e,,], (10) 

where a, b, and c are the constants of the spin-phonon 
interaction, H is the external magnetic field, ea(3 is the 
deformation tensor, and the coordinate axes are di­
rected along the fourfold axes. In the long-wave ap­
proximation, the deformation at each point of the crys­
tal is the same; therefore, the operator Sin the Hamil­
tonian (10) represents the total spin of all the paramag­
netic particles. Inasmuch as the total spin of the sys­
tem is conserved in the absence of an external field, 
the Hamiltonian .16', commutes with the field-independent 
part of the spin-Hamiltonian 

O"es = g~HS+d6's(O). (11) 

We also assume, for simplicity, that the magnetic field 
is directed along the z axis. Then, recognizing that 
Jz (eyz, eyz, w) = Jz (exz, exz, w) by virtue of the cubic 
symmetry, we obtain the following expression for the 
relaxation time: 

_, zn(g~c)'H'zJ 
'\' = J=(w)J,(e,,, e,,,- w)dw, 

Sp O"es' 
(12) 
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where Jxx (w) = Js (Sx, Sx, w). As is seen, in the case 
considered, the spectral functions of the spin system in 
Eq. (8) reduce to the spectral density of the correlation 
function for the transvers·~ component of the magnetiza­
tion. This spectral density is connected with the imagi­
nary part of the susceptib:ility, csJ and through it with 
functions of the line shape g (w) by the following rela­
tions: 

lioo , nNy' li!Jl 
2ny'th 2kTs l .. (!Jl) = x,..' (!Jl) =-4-th 2kTs g((i)), (13) 

where N is the number of paramagnetic ions. 
We compute the lattice spectral function by means of 

the Debye model (wqs = lqlvs): 
. 1 ,~ ( li!Jl., ) z 

l,(e.,, e • .,- !Jl) = 4 ~~ 2Mv.' (.1 ... e, + A,e.) 

•• 
1 kT!Jl1 ( 1 3 1 ) 

X [{1+n.,)6{!Jlq,-!Jl)+n.,6(-!Jl.,-!Jl)]=15 n'd IJ.'+T-;;r ' 
(14) 

where q is the wave vector, s the polarization, Wqs the 
frequency of vibration of the lattice (s = l for longitudi­
nal and s = t for transverse vibrations) A the unit wave 
vector, v s the sound velocity, e the polarization vector, 
M the mass, d the density of the crystal, nq the mean 
number of phonons of a given type. Further, 

NZ • 
Sp~s' = (g~H)' SpS.' + Sp~,.'(O) = - 4-{gp)'{H' + HI<ic), (15) 

where Hfoc is the mean square of the local field at 
the paramagnetic ions, duH to the spin-spin interac­
tion. If the local field, as is usually the case in para­
magnets, is much weaker than the external field, then 
we have ultimately for a cubic crystal 

(16) 

If the external field is comparatively small, then we 
must expect that the Kronig-Van Vleck mechanism be­
comes ineffective and it is necessary to take into ac­
count the modulation of thE! spin-spin interactions with 
the vibrations of the lattic,e. 

An expression similar to (16) was obtained for the 
relaxation rate by Peskovatskil, c41 with the spin system 
regarded as a set of two-l,evel particles, the transition 
rates of which are distributed according to some definite 
law. Such a procedure, however, can serve only as a 
guideline, since it is practically impossible to take into 
account the fact that the mutual spin flips (which play 
an important role in energy transfer to the lattice) 
cause the initial distribution over the frequencies to 
change continuously. We see that the use of the general 
formula (8) eliminates the necessity of investigating in 
detail the behavior of the individual paramagnetic par­
ticles in the relaxation process. 

3. FIELD DEPENDENCE OF THE SPIN-LATTICE 
RELAXATION TIMES 

Equations (5), (8), and (9) are suitable for the inves­
tigation of the dependence of the spin-lattice relaxation 
on the magnitude and direetion of the external magnetic 
field. When the relaxation is due to the Kronig-Van 

Vleck mechanism, one can use the even simpler formula 
(16) for the discussion of the dependence on the magni­
tude of the field. If we consider a system of noninter­
acting spins S = %, then g (w) ~ o (w - w0), liw0 = g{3H 
and the relaxation time, as has already been noted in 
the Introduction, is proportional to H4• Evidently, a de­
pendence that is close to this will be obtained every 
time one has a sharp resonance line with rapidly decay­
ing wings. If, say, the line then has a Lorentz shape with 
width C1 and is cut off at the frequency !!. » w01 then, in 
addition to the component that is proportional to ~. the 
relaxation time will also contain a component ~ H2all.. 
As follows from the experiments of Peskovatskil cuJ 
the assumption that the wings of the resonance line are 
sufficiently long cannot be regarded as entirely without 
foundations. If this assumption is correct then, as is 
seen, the deviation from the law T-1 ~ H4 can be ex­
plained within the framework of the Kronig-Van Vleck 
mechanism. 

It is pertinent here to note that g (w) in Eq. (16) is 
the line shape determined by the spin-spin interaction, 
and the fact that, because of the spin-lattice interaction, 
Lorentzian lines are also obtained for a system of iso­
lated spins, with wings that extend up to frequencies of 
the order of the Debye frequency, uaJ gives nothing new 
for the field dependence of the spin-lattice relaxation 
time. c131 

So far as the orientation dependence of T-1 is con­
cerned, it is very simply determined with the help of 
consideration of the invariance relative to transforma­
tion of the symmetry group of the crystal. In view of 
the fact that the numerator and denominator in the right 
side of Eqs. (5) and (8) are polynomials of low degree in 
H, the calculations reduce to the construction of the in­
variants of such polynomials. For definiteness, let us 
consider again the system of spins S = ~2, assuming 
that the Zeeman energy materially exceeds the energy 
of the spin-spin interaction. Then 

where ga{3 is the "g-tensor," and the relaxation time is 
rewritten in the form 

(18) 

where Aa(3yo does not depend on the orientation of the 
magnetic field. 

It is curious that the functional form of the orienta­
tion dependence turns out to be of the same accuracy as 
for a system of mutually isolated spins. c141 The differ­
ence lies only in the magnitude of the constants, by which 
are multiplied the various invariants of the group sym­
metry, composed from the tensors nan{3nyn0. 

In conclusion, we note that the proposed scheme can 
be used without practically any change for consideration 
of two-phonon processes in the first place, in spin-lat­
tice interaction and in the second place, if the interme­
diate levels of the paramagnetic ions are separated 
from the fundamental intervals, significantly exceeding 
the limiting energy of the phonons. 

The author is sincerely grateful to S. A. Al'tshuler 
for his valued discussion. 
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