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The propagation of low frequency electromagnetic waves in semiconductors is investigated under conditions of inelastic 
scattering of the carriers by optical phonons. It is shown that the singularities in the components of the current, which occur 
under these conditions, cause the appearance of oscillating reflecting surfaces which are responsible for the existence of higher 
harmonics in the wave reflected into vacuum. The reflection coefficients of these harmonics are calculated. 

IT was shown in [1' 21 that in semiconductors with 
strongly inelastic scattering of the carriers by optical 
phonons, the components of the current in crossed 
static electric and magnetic fields E and H possess 
singularities at a certain value of the ratio E/H. The 
influence of these singularities on the propagation of 
electromagnetic waves was investigated in [31 • How­
ever, only the propagation of circularly polarized waves 
was studied in [31 • In this case the electric field, which 
is damped upon its motion into the depths of the sample, 
at a certain point becomes equal to the critical value 
Ecr at which the singularities in the components of the 
current appear (it is assumed that the external mag­
netic field H, determining Ecr• is fixed and the electric 
field on the boundary of the sample is larger than Ecr ). 
At this point, owing to the singularities, which consist 
mainly of interruptions of the dissipative current, the 
properties of the medium change abruptly, which leads 
to the appearance of an effective interface and conse­
quently to the reflection of the wave. 

The situation is considerably more complicated for 
the propagation of a wave of non-circular polarization. 
In this case, at each moment of time, the electric field 
already becomes equal to Ecr at many points of the 
space occupied by the semiconductor. Therefore a 
large number of surfaces appear, with E > Ecr on one 
side of each of these surfaces and E < Ecr on the other. 
In other words, the semiconductor breaks up into lami­
nas, the properties of every other lamina are the same 
and those of neighboring laminas are markedly different. 

The important distinctive feature of the propagation 
of a wave of non-circular polarization is that the coor­
dinates of these interfaces change with time, that is, the 
reflection takes place from moving walls. It is obvious 
that this fact must lead to a change in the frequency of 
the reflected wave; harmonics with frequencies differ­
ent from the frequency of the wave incident on the semi­
conductor should be present in the reflected field. 

This article deals with the influence of the indicated 
peculiarities due to non-circular polarization of the wave 
on its propagation. 

Let us consider the half-space z > 0, occupied by the 
semiconductor, with an external constant magnetic field 
H applied along the z axis. It is assumed that the mag­
netic field satisfies the inequalities 

(1) 
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Here v 0 denotes the velocity of a carrier (in order to be 
definite, we shall talk about an electron) having an en­
ergy e: equal to the energy nw 0 of an optical phonon, c is 
the velocity of light, and E± are the characteristic fields 
determined by the relations eE±T± = mv0, where T+ and 
T- denote the electron relaxation times in the regions 
e: > tiw 0 and e: < nw 0 ; m is the electron mass. 

Inequality (1) means that the critical electric field, 
which is determined with the aid of the expression Ecr 
= Hv 0 /2c, [1• 21 has a value between the fields E- and E+; 
therefore at E ::>l Ecr very favorable conditions are cre­
ated for extremely inelastic scattering of the carriers 
by optical phonons (for more details see [1' 21 ). 

Now let a plane monochromatic wave of frequency w 
be incident on the semiconductor in a direction normal 
to the interface. The polarization of the wave is as­
sumed to be arbitrary, and the frequency is such that 
w << T}t, where TE denotes the time required to accel­
erate the electron from e: = 0 to e: = nw0• If E ::>l Ecr then 

l's = mv, /leiH ~ 2mc /leiH = 2w,-• 

(e denotes the electron charge and Wo is the cyclotron 
frequency). Then the low-frequency criterion takes the 
form 

(2) 

This condition means that during the time of revolu­
tion of the electron in the passive region (E < nw0), 

which coincides in order of magnitude with the time 
required to establish the needle-shaped distribution, [11 

the electric field remains essentially constant. There­
fore one can use the static conductivity tensor derived 
in [l,zJ. 

The basic equations of the problem are Maxwell's 
equations: 

(3) 

Here n = ..f€L denotes the index of refraction of the 
medium, EL is the dielectric constant of the lattice, and 
j is the conduction current, which after simple trans­
formations can be written in the following form: 

(4)* 

*[Eez) =EX ez. 



422 0. N. CHAVCHANIDZE 

Here a= wp/wwc; Wp = V47Te 2N/mEL is the plasma 
frequency; N is the concentration; ez is the unit vector 
along the z axis; j o = Y2 I e I Nv 0 ; j 11 is the dissipative 
current and j 1 is the Hall current. The values of j 11 
and j 1 as functions of E were obtained in [lJ without 
taking interelectron collisions into account, and their 
values with allowance for these collisions were obtained 
in [21 • These functions depend weakly on the rate of in­
terelectron collisions, and in both cases they can be 
well approximated by the expressions 

iu --:- = 8(E- Ecr), 
)o 

h Ecr 
--= 1-8(E-E) jo E cr . (5) 

Here e(x) denotes the Heaviside function, which is equal 
to unity for x > 0 and equal to zero for x <O. 

Taking (4) and (5) into account, it is not difficult to 
see that the nonlinear equations (3) contain on the right­
hand sides a sum of delta functions (that depend on the 
unknown electric field), which are equivalent to sources 
of electromagnetic waves. It is therefore convenient to 
change from differential to integral equations. 

Mter applying the usual procedure (see, for example, 
[41 ) for the construction of the solution of Eqs. (3) with 
the aid of the appropriate Green's function, one can 
.easily obtain integral equations replacing the system 
(3): 

1 t ~ a; •.• (zo, to) 
E,,,(z, t) =- 2 J dt, J dzo G(z, tJzo, to) 

c -~ , at, 
(6) 

+ _1_ f d E (0 ) aG(z, tJz,, to) I 
~ to ~Y ,~ • 
:l1t _co 8zo z~=O 

Here G (z, t I z 0, t 0) is the Green's function of the scalar 
wave equation for semi-infinite (z > O) space, satisfy­
ing the Dirichlet conditions. It has the form 

G(z,tlz,,t,)=2 ~ n[ e(n Jz;z,J_(t-t,)) 

-e(n lz:z•l_(t-t,) )] ; 

(7) 

Ex,y(O, t 0) is the value of the electric field for z = 0. 
The following relations were used in the derivation 

of Eq. (6): 

G( I ) - aG(z, tJz,, to) I - 0 
z,t Zo,t - - , 

ato tG=t 

G( I ) I _ aG(z, tJz,, t,) I 
z, t Zo, to ta-+-oo - = 0, 

at, •.-.-~ 

iJG(z, t Jz,, t,) I = O. 
8zo xcrl"oo 

(Sa) 

(8b) 

(8c) 

The validity of Eqs. (8) follows directly from the ex­
plicit form of the Green's function (7). One can also 
easily understand their physical meaning. Equation (Sa) 
means that the effect of the source acting at the moment 
of observation, is equal to zero at any arbitrary point 
far away from the source. Equation (8b) means that the 
effect of the source acting at the moment t 0 = - oo dies 
down to zero at the present moment of time. Equation 
(Be) means that the effect of the source acting at an in­
finitely distant point dies down to zero for finite values 
of z. 

Having integrated the first term of (6) by parts with 
respect to t 0, using the explicit form of the Green's 

function (7), and also using Eq. (8), we obtain instead 
of (6) 

E,,,(z, t) = Ex.v ( 0, t- : z) + ~: J dz, [ ; •.• (zo, t 
0 

- : I Z + Zo I ) - ix.v ( Zo, t- : I Z - Zo J ) ] • 

(9) 

In what follows we shall assume that the electromag­
netic wave is weakly attenuated. This occurs if the dis­
sipative current due to the wave is considerably smaller 
than the displacement current. With Eqs. (4) and (5) 
taken into account, it is not difficult to find that the lat­
ter condition is equivalent to the inequality 

a<t. (10) 

In accordance with (10) we represent the field in vac­
uum (z < 0) in the form 

Ex(z, t) =E,[cos (wt-kz) +R.cos (wt+kz)] +aF.(z, t), (11 ) 

E,(z, t) = E,,[sin (wt- kz) + R, sin (wt + kz)] + aF,(z, t). 

Here Exo and Ey0 are the amplitudes of the components 
of the electric field of the incident wave, Rx and Ry de­
note the reflection coefficients of the fundamental har­
monic (of frequency w) in the zero-order approximation 
with respect to a, a F x,y(z, t) are the desired small cor­
rections to the reflected wave, and k = wjc. 

The usual continuity conditions of electrodynamics 
are satisfied across the vacuum-semiconductor inter­
face (z = 0): 

E •.• (-0) = E •.• (+O); aE. ,(-0) ;az = aE •. ,(+O) (az. (12) 

Therefore, in the right hand side of Eq. (9), instead of 
the first term one can substitute expression (11) for 
z - 0 and t- t- nzjc. If in addition we utilize the 
second equation in (12) to the zero-order approxima­
tion in a, then we can determine Rx and Ry (Rx = Ry 
= (1 - n)/(1 + n)). Then (9) takes the form 

E,(z,t)=E.p(1+b)coss++aF.(o,t-: z) (13) 

+ ~: ~dz,[;.(z,,t-: Jz+z•l)-;.(z,,t- :Jz-zol )] 

X E,(z, t) = Kp(1 +d) sins++ aF, ( 0, t- : z) 

+~:Idz,[;.(z,,t-: lz+z,J)-;.(z,,t-; Jz-z,J)]. 

The following notation has been used in obtaining ex­
pression (13): 

E,,(1 +R.) =Ecr(1 +b), E,,(1 +R,) =Ec,(1 +d), 
s, = wt- knz. (14) 

The parameters b and d determine the degree of 
"supercriticality" of the electric field of the wave. In 
this connection three cases are possible: 1) b, d > 0; 
in this case the field at the surface z = 0 is always 
larger than Ecr; 2) b > 0 and d < 0 (or conversely); 
in this case the maximum value of the field at z = 0 is 
larger than Ecr but the minimum value is smaller than 
Ecr; 3) b, d < 0; in this case the electric field at z = 0, 
and consequently also for z > 0, is always smaller than 
Ecr· In the latter case the singularities in the current, 
which occur when E = Ecr• do not appear. Therefore 
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we confine our attention to an investigation of the first 
two cases. 

By using the smallness of the parameter et, we shall 
solve the system of integral equations (13) by the method 
of successive approximations. The zero-order solutions 
in et correspond to the first terms in Eq. (13). In order 
to obtain expressions for the electric field with greater 
accuracy, it is necessary to substitute (4) (with Eq. (5) 
taken into account) with Ex y corresponding to the zero­
order solutions in a, into the integrals appearing in (13). 
After the indicated substitution and simple calculations 
we obtain 

E _ E (1 +b) [ 1 aknz _e-'-:(B-7('-s+:,:-).:...) ] 
x- cr coss+ --2- A(s+) (15) 

e aknz { n ) --r;y-2-Ecr(1+d)sins+[1-El(B(s+))]+aF. O,t- 7 z · 

E-E (1+d)' { 1 aknze[B(s+)]} 
11 - cr SlllS+ --2- A(s+) 

e aknz { n ) + -r;r-2-Ecr(i + b)cos s+[1- E>(B(s,))] + aFy 0, t - 7 z . 

Here the following notation has been introduced: 

A (rp) = [ (1 +b)' cos' <p + (1 +d)' sin2 •r] '", 

B(rp)A(rp) ==; (2b+ b') cos'cp+ (2d+d') sin'cp. 
(16) 

Thr first terms in (15) describe the propagation of 
the fundamental harmonic with damping taken into ac­
count. As follows from (15) the damping mechanism is 
involved then when B(s..) becomes positive, which cor­
responds to the inequality E > Ecr• where E is to be 
understood as the solution of the zero-order approxi­
mation in a. The second terms in (15) describe the 
change of phase of the fundamental harmonic, and this 
change occurs only when the damping mechanism is 
switched off. 

Formulas (15) give qualitatively correctly the be­
havior of the fundamental harmonic as it propagates 
into the interior of the semiconductor. However, in 
order to obtain qualitatively correct results with ac­
curacy et (both for the fundamental as well as for the 
additional harmonics), it is necessary to make in Eqs. 
(13) one more step of the successive approximations. 
This is associated with the fact that the e function in 
the integrand of (13) (see Eqs. (4) and (5 )) is very sen­
sitive to a small change of its argument. Therefore, 
in order to obtain Ex,y correct to order Ci, it is also 
necessary that the argument of the E>-function be deter­
mined to the same accuracy. The necessity of the next 
step of the successive approximations can also be un­
derstood from a physical point of view. In fact, in order 
to obtain the wave which is reflected from the oscillat­
ing walls (consistent with the qualitative picture dis­
cussed during the formulation of the problem), it is 
necessary to use in the integrals in (13) the fundamen­
tal harmonic with its attenuation and change of phase 
taken into account, since it is precisely these factors 
which cause the appearance of the walls. The latter 
statement becomes especially clear for b, d > 0. In this 
case, if the attenuation of the fundamental harmonic is 
not taken into account in the integrals in (13) (which is 
equivalent to making only the first step of the succes­
sive approximations), the field will always be larger 
than Ecr and, consequently, singularities in the current 

will not have any influence on the propagation of the 
wave. 

Let us substitute expressions (4) and (5) into (13), 
first having replaced Ex,y in them with the aid of ex­
pressions (15). Mter integration and simple transfor­
mations we obtain 

[ L (z, t) ] e 1 . 
] E.= Ecr(1 + b)coss+ 1--- ---(1 + d)Ec,sms+ 

2A(s+) lei 2 
'+ 

a s [ COS<p X [aknz -L(z,t)]+TEcr dcp<D(cp) (1 +b)~( 
-- ' cp) 

-Te!(1 +d)sin<p] + aF.( O,t- ~ z ), 

[ L(z,t}] 
E.=Ecr(i+d)sins+ 1-ZA(s+) 

e 1 
+ Tef2Ecr(1 + b)cos s+ [aknz- L(z, t)] 

(17) 

a 's+ [ sin<p e ] +-Ecr d<p(!l(cp) (i+d)--+-1 -1 (1+b)coscp 4 __ A(<p) e 

+aF.(O,t- ~ z). 
Here the following notation has been introduced: 

L(z, t) = EJ(s+)[aknz + B, (z, t)], 
B,(z,t) = [B(s+) -aknz]EJ[aknz-B(s+)], 

(!l(cp) = {1-E>[B(<p) -y,(cp)]}EJ[B(cp) -y,(cp)], (18) 
y,(<p) =- 1/,a(<p-s+), y,(cp) = - 1ha(cp-s-), 

s_ = wt+knz. 

In deriving (17) we used the fact that b » et (for the 
sake of definiteness it is assumed that b >d). This in­
equality means that the damping is sufficiently weak so 
that the wave is attenuated to Ecr over a distance of the 
order of several wavelengths. Therefore the locations 
of the reflecting walls (in other words, the values of z 
at which the argument of the E>-function in (5) vanishes) 
are determined by the behavior of the fundamental har­
monic, but not by the behavior of the additional harmon­
ics whose intensity is proportional to et. 

The first two terms in (17), just like the first two 
terms in (15), describe the propagation of the fundamen­
tal harmonic with damping and the change of its phase 
taken into account. However in (17) these processes are 
taken into consideration with greater precision (correct 
to order a) than in (15). The third terms appearing on 
the right-hand sides of expressions (17) correspond to 
waves due to the existence of oscillating surfaces, sepa­
rating the region containing the dissipative current from 
the region without this current. Let us carry out an 
analysis of the last term in more detail. 

It is not difficult to show that the integrand differs 
from zero only for values of q; satisfying the following 
inequalities: 

(19) 

The regions of q; satisfying the inequalities (19) are 
quite clear on the figure (they are shown by the heavy 
lines), on which all three functions appearing in (19) 
are plotted, namely the periodic function B(q;) having 
a period equal to 1r, and the linear functions y 1(cp) and 
Yz(({J ). 

The boundary points of these regions, that is, the ab­
scissas of the points of intersection of B(q;) with y1(q;) 
or with y2(q;) are, respectively, the functions s+or s_. 
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Graphical determination of the region of integration of the integrals 
in (17)o 

Therefore the integrals appearing in (17) represent the 
sum of integrals whose limits of integration depend on 
s+ or s_. The limiting points, which are functions of s_, 
cause the appearance in (17) of terms which depend on 
wt + knz and consequently are responsible for the exis­
tence of waves traveling toward the negative direction 
of the z axis. It is not difficult to verify that with in­
creasing values of z the intensity of such waves de­
creases. In fact, with increasing values of z the dis­
tance between the straight lines y1 (cp) and y2(cp) in­
creases (see the figure), which leads to a decrease in 
the number of boundary points depending on s_ and con­
sequently leads to a decrease in the intensity of the re­
verse (with respect to the positive direction of the z 
axis) waves. It is natural to associate each point of in­
tersection of the curves B(cp) and y2(cp) with the exis­
tence of a reflecting surface which appears as a result 
of the cutoff of the dissipative current at E = Ecr· There­
fore for a fixed value of z the number of boundary points 
depending on s_, determines the number of reflecting ' 
surfaces which appear to the right of the given value of 
z. Upon an increase of z, an instant sets in when y2(cp) 
starts to intersect B( cp) past the point cp = wt - knz, 
which is the upper limit of integration in (17). For such 
values of z the field will not contain waves traveling in 
the negative direction of the z axis, because all boundary 
points will depend only on s +. The disappearance of the 
reflected waves corresponds to a region inside the semi­
conductor, wherein the field is already smaller than Ecr, 
owing to the attenuation. 

From an experimental point of view, the determina­
tion of the functions Fx,y is of fundamental value; ac­
cording to their definition (see Eqs. (11 )) these functions 
correspond to the waves which are reflected into vacu­
um and which appear in the first-order approximation in 
a. It is convenient to represent these functions in the 
following form: 

F.o.(z,t)=Ecr I:R•ovmcosm(cot+kz) (20) 
maO 

+ Ecr I:R•ovm sin m(cot + kz) 0 

m=t 

Here Rxm, Rxm, Rym, and Rym denote the coefficients 
of reflection, subject to determination with the aid of 
the boundary conditions (12). We recall that the first 
conditions (12) were taken into account during the tran­
sition from differential equations to integral equations. 
It remains to utilize the equality of the derivatives with 
respect to z (for z = 0) of expressions (11) (with (21) 
taken into consideration) and of expressions (17). 

Before utilizing the boundary conditions (12), let us 
show that for values of z close to z = 0 (such that aknz 
«b) the term B1(z, t) in the first formula of (18) can 

be neglected in comparison with aknz. In fact, by taking 
the second formula of (18) into consideration it is not 
difficult to see that the ratio of the time interval, during 
the course of which the expression e [B(s+)]B1(z, t) does 
not vanish, to the time interval when e [B(s+ )] aknz does 
not vanish will be of the order of aknz/b for small val­
ues of z. Therefore, "on the average" (with respect to 
time), the inequality 

B,(z, t) ~ aknzoaknz/b~aknz (21) 

holds, which permits us to neglect the correction B1(z, t) 
near the wall z = 0, where this correction appears in 
(17) after applying the second step of the successive ap­
proximations. This does not mean, however, that in (17) 
one can also neglect the second term, which is also a 
consequence of the second stage of successive approxi­
mations. The integrand of this term is of the order of 
unity (where it does not vanish). Therefore the integral 
term in (17) is of the order of aEcr /4, which is multi­
plied in the first place by the length of an individual 
segment of the region of integration (see the figure), 
which is of the order of aknz1rjb, and in the second 
place it is multiplied by the number of such segments, 
which is l':j 2b/a7T. Therefore this term l':j aEcrknz and 
in order of magnitude it agrees with the other terms 
appearing in (17). 

By expanding all of the functions appearing in (17) 
near z = 0 in a Fourier series in the time, and by ap.:. 
plying the boundary conditions (12) for the derivatives, 
we obtain equations for the reflection coefficients. The 
solutions of these equations become manageable only 
under certain additional assumptions. We cite the re­
sults in that particular case when the polarization of 
the wave is close to circular: 

2(b- d) [ 1 ] 
'Y = a 1 + (1 +b)' ~ 10 (22) 

Confining our attention to the first approximation in 
the parameter y, we obtain the result that the coeffi­
cients of reflection of all the harmonics vanish except 
for the harmonics with frequencies wand 3w, for which 
we have 

R., = R .. , R., = -R .. , R., =fl.,, R., = -R.s, (23) 

where 

R.~ =: 2(1 ~ n) [sin so+ ~(1 + b)cos so], 

R .. = 2(1:n) [-1+cosso+ l:ll1+b)sins0 ], 

y n [ e ] R., = -4 2(1 + n) cos 3so +Tef(1 + b)sin3s0 , 

(24) 

'Y n [ 0 e ] R.,=-:r 2(1 +n) -sm3so+feT(1+b)cos3s0 0 

Here 
2b 2+b 

so=-;;- 1+b. (25) 

From formulas (24) with (25) taken into account it is 
seen that the coefficients of reflection are rapidly os­
cillating functions of the parameter of supercriticality, 
the frequency of the incident wave, and the magnitude 
of the magnetic field (we recall that a = w~ j wwH)· The 
smallness of the period of oscillation is a consequence 
of the condition b » a. 
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Let us discuss the experimental conditions under 
which it is possible to observe the effects investigated 
in this article. As the investigated sample let us take 
p-Ge (where the inelasticity of the scattering is sub­
stantial [sJ) with the parameters m = 0.3m 0 (m 0 denotes 
the mass of the free electron), nw0 = 6 x 10-14 erg, EL 
= 16, and T+ = 10-12 sec. Then for Ecr = 0.2E+ we obtain 

eH 2eEcr 2cEcr , -1 
w,=-~--~--=4·10"sec . 

me mvo eE+1:+ 

Therefore condition (2) will be satisfied if the frequency 
of the incident wave is of the order of w = 8 x 10 10 sec-\ 
which corresponds to a length ;\. = 6 mm of the waves in 
the sample. The value of the magnetic field, at which the 
electric field 0.2E+ = 650 V /em becomes critical, is of 
the order of 6.4 kOe. The condition that the parameter 
a be small will be satisfied if the hole concentration 
N « 2.5 x 10 14 cm-3. Finally, let us show that for y = ~3 

the coefficient of reflection for the harmonic of frequency 
3 w is of the order of ~3o. 
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