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The polarization properties of an intense monochromatic wave traversing a resonance medium of two-level atoms without 
absorption are studied. The magnetic sublevel shifts of the atoms, refractive index and Stokes parameters are calculated. It 
is shown that the polarization ellipse rotates on traversal of the wave, and the rotation angle is calculated. Dispersion properties 
of the medium are considered. Expressions are obtained for the refractive index and absorption coefficients of a weak wave. 
Three-photon scattering, resonance absorption line splitting and four-photon parametric interaction effects for various cases 
of polarization of an intense wave are also considered. 

1. INTRODUCTION 

WHEN intense optical radiation acts on a resonant 
two-level medium, effects are produced that are miss­
ing in linear optics. In accordance with the character 
of their manifestation, these effects can be divided into 
two classes, self-action and multiphoton phenomena. 

If the deviation from resonance is large and absorp­
tion can be neglected, then all the self-action effects 
are connected with the nonlinear part of the refractive 
index. Just as in transparent media, this nonlinearity 
causes self-focusing and defocusing, and also multiple 
broadening of the spectrum. The self-focusing ~henom­
ena in potassium vapor were first observed inC 1 , and 
self-modulation spectrum broadening was observed 
inC 2 ' 3J. A distinguishing feature of these effects in 
resonant media is the strong frequency dependence, 
which is missing in transparent media. Among the self­
action effects far from resonance is included also non­
linear delay of lightC2J (the dependence of the group 
velocity on the intensity). This effect, however, has not 
yet been observed experimentally. 

The principal multiphoton phenomena in a two-level 
system are three-photon scattering and four-photon 
parametric interactions. In three-photon scattering, the 
atom absorbs two incident quanta of frequency w, emits 
a quantum 2(L' - wo, and goes over into the excited states. 
In the four- photon effect, the atom absorbs two quanta 
of frequency w and emits two others in accordance with 
the scheme 2w - w1 + w2. 

Owiilg to the presence of coherence, four-photon in­
teraction proceeds mainly in the direction of the inci­
dent radiation, thus leading to a broadening of the 
spectrumC 2 ' 3J. The angular features of four-photon 
scattering were investigated inC4 ' 5J. Three-photon scat­
tering in the direction of the incident radiation in rubid­
ium vapor was first observed in[sJ. However, as ex­
plained in[7J, the three-photon process in the direction 
of the incident radiation is strongly suppressed by the 
competition of the four-photon scattering. This e~lains 
why no three-photon scattering was observed in[sJ. In 
the direction opposite to the incident radiation, three­
photon scattering always takes place and is appreciably 
enhanced[ e). An interesting feature of a resonant med­
ium is also the high-frequency stark effect, which has 
been investigated in detail for the absorption line 
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inC 10•11J and for the three-photon emission line in[ e). 

A theoretical analysis of these effects is based as a 
rule on the scalar equations of the resonant medium. 
Whereas in the linear theory this is justified, in the non­
linear case specific polarization phenomena occur. The 
equations of the resonant medium, with allowance for 
the polarization of the waves, have been formulated in 
terms of the density matrix, and in some cases (gas 
lasers, photon echo, self-induced transparency) they 
have been investigated inC12J (where a more detailed 
literature can be found). In the present paper we solve 
the SchrMinger equation, after which we calculate the 
polarizability of the medium, which enters in Maxwell's 
equations. Such a method is more lucid and makes it 
possible to calculate the energy shifts and predict im­
mediately the possible abso~tion and emission proces­
ses and their cross sections 13]. 

The first two sections of this paper are devoted to 
the study of the polarization properties of an intense 
monochromatic wave passing through a resonant med­
ium without absorption. We calculate the atomic level 
shifts, the refractive index, and the Stokes parameters. 
We show that the polarization ellipse is rotated in the 
course of passage, and calculate the angle of rotation. 
We note that the rotation of the polarization ellipse was 
obtained inC 12J for the most general case of an absorb­
ing medium without an explicit form of the dependence 
of the rotation angle on the intensity. In our concrete 
problem we are able to calculate exactly (in terms of 
the intensity) all the coefficients (see formula (3.5) for 
the rotation angle). 

Sections 3 and 4 are devoted to the study of the dis­
persion properties of a resonant medium. Formulas 
are obtained for the refractive indices of a weak wave, 
for the line splitting in resonant absorption and in 
three-photon scattering, and also for four-photon 
parametric effects in different cases of polarization of 
an intense monochromatic wave. 

Since relaxations are neglected throughout, i.e., it is 
assumed that the pulse duration is much shorter than 
the relaxation time, a monochromatic wave is under­
stood in the sense of T1 ,2 » T » E-1 (T is the pulse 
duration, E the deviation from resonance, and T1 ,2 the 
relaxation times). The question of turning on the inter­
action with the monochromatic field has been discussed 
in detail inc1- 3 ' 7 ' 13J. 
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2. BOUND STATES OF AN ATOM IN THE FIELD OF 
AN INTENSE WAVE 

We consider the interaction of a two-level atom, 
which has in the ground state an energy E1 and an angu­
lar momentum h = 1/2, and in the excited state respec­
tively E2 and h = 3/2 (for an isolated atom these states 
are degenerate with respect to the projection of the 
angular momentum), with an intense wave propagating 
along the z axis and specified by a vector potential 

A= Re'('•-•<> +c. c., (2.1) 

where R(z, t) varies slowly compared with the exponen­
tial. The wave functions of the atom in the absence of 
the field will be designated by 1/J(m) and <l>(fJ.) (m = ±%, 
fJ. = ±Y2, ±%),and the solution of the Schrodinger equa­
tion 

ih a'¥= (Ho- dE) 'I', H, ( ~m) ) = E,,,( ljl(m) ) 
at <v(ft) ll>(ft) 

(2.2) 

will be sought in the form 

'I'= a(m)ljl(m)exp (- ~ E,t) 

+ b(ft)ll>(ft) exp (-*E,t + iet), 
(2.3) 

where d is the operator of the dipole moment of the 
atom, E = -aA/cat, E = wo- (tl, wo = (E2- E1)/n. Then, 
in the case of a monochromatic wave (R = R(z)) we ob­
tain the following values for the split energy levels of 
the ground and excited states (E~h,2 and (E~h,2,3: 

Here 

(E,'),,, = E, + (Mie(1- 8d, 

(E,') '·' = E,- (/2/ie (1- 8,,,), 

(E,'), = E,. 

8,,, == )' 1 + St,z; 

~ 1,2 are dimensionless intensity parameters: 

_ 4:rtldl'p(1 -_2!:)· 
5'·' - 3cli'e' + 2 ' 

d is the reduced matrix element of the transition, 

(2.4) 

(2.5) 

P = w2 IRI2/21Tc is the energy flux in the wave (2.1), and 
17 2 is the Stokes parameter corresponding to circular 
polarization. The polarization tensor is specified in the 
form 

w' -- A 

J.~=-.-R.R~·. a,~= x,y, SpJ = P, 
2:rtc 

·_ P (1+1]3 T]t-iT]z) 
!-- ' 

2 1]1 + iJ]z 1 - 1]2 

(2.6) 

where 17 3,1 determine the linear polarization along the x 
axis and at an angle JT/ 4 to this axis. The wave func­
tions of the states (E~h,z (the atom was in the ground 
state prior to the turning on of the interaction) are then 
equal to 

i 1 
'!',,, = C,,, { exp (- r;E,t )ljl ( + 2 ) 

+ iw,d' e"' [R('~'>t1J(+_!:_)-y3R(±)ll>(+~)] 
clie y6 1 + 8~,, - 2 2 

(2.7) 
( i )} [ iet ] xexp -hE,t+iet exp 2 (8,,,-1) , 

ICt,zl' = (8,,, + 1)/28,,,, 

where we have introduced the notation R<.±> = Rx ± iRy. 
Let us compare the atomic level shifts determined by 

formulas (2.4) and (2.5) for different cases of polarized 

light. In the case of linear polarization 112 = 0, ~ 1 = ~ 2 
= ~ = 41T[di 2P/3cl'i2E2, and in the case of circular polar­
ization 112 = 1 and ~ 1 = U2 = ~z/3, so that at the same 
wave power the maximum shift is obtained in the case 
of circular polarization. In the case of completely un­
polarized light we also have ~ 1 = ~ 2 = ~ , and in the 
sense of the level shift such light behaves as if it were 
linearly polarized. 

It is interesting to note that in the general case 
population inversion takes place between the magnetic 
sublevels (see (2.7)). 

3. PASSAGE OF INTENSE MONOCHROMATIC WAVE 
THROUGH A RESONANT MEDIUM 

Let us consider the passage of an intense wave (2.1) 
through a resonant medium of the atoms described in 
Sec. 2. Assuming that the atom was in the ground state 
prior to the turning on of the interaction, writing down 
the equation 

( 1 a' ) 4:rtn i) Ll--- A=---(d) 
c' iJt' c i)t (3.1) 

(n is the density of the atoms) for the potential in the 
approximation of electric-dipole resonant transitions, 
and using the functions (2.7) to calculate the quantum­
mechanical mean value (d) of the dipole moment of the 
atom, we obtain the following transmission equations 
for the components R<±> of the wave vector potential 
amplitude, 

_!:__R(±> = iq (~+-1-) R(±J, 
dz 8,,, 8,, 1 (3.2) 

q = rt~lo I d I' n/12clie. 

It follows from these equations that the parameters 
~ 1,2 are not altered by the passage of the wave. Thus, 
we can introduce for the wave components R<t> the re­
fractive indices 

n<±> = 1 + !: (~~, + 8~,), (3.3) 

as follows from the solution of (3.2). Unlike the com­
ponents R<.±>, in the general case there is no wave vector 
for the Cartesian components Rx,y· Equations (3.2) 
also make it possible to explain the polarization proper­
ties of the transmitted radiation. If the incident wave is 
circularly polarized (we assume that R<+>(O) = 0), then 
R<+>(z) = 0 and the polarization remains unchanged. A 
linearly polarized wave likewise does not change 
polarization. For such a wave, the refractive index of 
the medium is given by 

n = 1 + 4qc I w,B. (3.4) 

In the general case of elliptic polarization, Eqs. (3.2) 
lead to rotation of the axes of the polarization ellipse 
(without deformation) through an angle yz, where 

y=2q(1/8,-1/8,). (3. 5) 

We can consider the passage of a quasimonochrom­
atic wave by regarding R<±>{o, t) as slowly varying in 
time and replacing in (3.2) d/ dz by d/ dz- d/ edt. Then 
the solutions of these equations will depend on 
R(O, t- z/c) and ~(0, t- z/t). We write down these 
solutions for the Stokes parameters, since the polar­
ization properties of quasimonochromatic radiation are 
determined by the tensor (2.6) (even though in the gen-
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eral case the polarization tensors are of higher order, 
we assume here that all reduce to a second-order 
tensor): 

P(z) = P, l]z(z) = !] 2, 

l]t,s(z) = 1]1,3 cos yz ± !] 3, 1 sin yz. 
(3.6) 

These relations show, in particular, that the degree of 
polarization 11 = ( 11~ + 11~ + 17~) 112 of the radiation does 
not change on passage through the medium. Nor do the 
power P and the probability 1/2 of circular polarization 
change. On the other hand, the parameters 77 1 ,a oscillate 
with frequency yz. It is interesting to note that by de­
termining experimentally the length of the oscillations 
zo = 2rr/y we can determine the degree 77 2 of the circular 
polarization (if we also know the power of the wave), as 
follows from (3.5) and (2.5) (in the case of small non­
linearities ~1,2 «:: 1 we have z0 f'>' 2rr/q~1/2). The same 
oscillations cause the parameters 77 1 and 77 3 to be modu­
lated over the cross section of the beam with a charac­
teristic modulation dimension equal to ro( qz ~ o 112f1 «:: ro 
when ~ « 1 (ro is the beam radius, and ~ 0 is the value 
of ~ at the center). 

Formulas (3.6) have one more interesting feature. 
Let us assume that the incident beam is almost com­
pletely polarized along the x axis, i.e., 77 3 ~ 1, 77 1 = 0, 
112 « 1. Then at low intensities it follows from (3.6) 
that 1/a(z) ~ cos (qz~172). We then have for the probabili­
ties wx,y of the polarizations along the axes x andy 
respectively, starting from the definition (2.6), 

w,., = 1/, [ 1 ± cos ( qz1;l] 2 ) ]. (3. 7) 

Therefore, even when 112 << 1, provided only qz~ry 2 ~ 1, 
the appearance of a y component of the field has a con­
siderable probability. 

We note that all the foregoing pertains to the integral 
(with respect to time) characteristics of the beam. If 
we are interested in the waveform of the pulse, then it 
is not necessary to carry out the averaging indicated in 
(2.6). In this case we can use the solutions of (3.2). In 
each section of the beam the quantities IRx,y [2 will be 
modulated in time, and the time of such modulation will 
be of the order of T(qz0-1 « T (Tis the pulse dura­
tion). 

4. DISPERSION CHARACTERISTICS OF RESONANT 
MEDIUM 

To study the dispersion properties of the medium, 
let us consider the passage of a weak wave through the 
medium in the presence of an intense wave propagating 
the opposite direction (see[ 7J), i.e., we consider in place 
of (2.1) a potential in the form 

A= R(z)e'<'•-•!l + A,(z, t)e-'''•+•t1 +c. c., 

IA,(z, t) I~ IR(z) 1-
(4.1) 

The atomic amplitudes a(m) and b(fJ.) in (2.3) will also 
be represented in the form of sums 

a(m) = a,(m) + a,(m), b([J.) = b,(fl.) + b2 (;t), 

where la2(m)l « la1(m)l, lb2(fJ.)I « lb1(fJ.)I. Further, 
calculating the weak component of the Doppler moment 
of the atom in an approximation linear in A2(z, t) and 
lowering the order of Eq. (3.1) for A2(z, t), we obtain the 
following equations for the Fourier components F(z, w') 

of the weak field: 

_!_p<±1 (z, w') = a<±1 (w 1 )F<±1 (z, w1 ) + iB'±1 {w 1 ) e''' F'"'1 (z, w1 ). 

iJz 

p<±1 (z, w') = F, (z, w') ± iFu(z, w'), 

(4.2) 

where the coefficients a <±>(w') and 13w(w'), which are 
functions of the running frequency c.•', are given by 

.w-w1 
. {8,+1 ( Wo'ldi'IR'+ll') a'+ l = '--- 3!qe --- 1 - -""::-:-':-:-,--"-

c 28, 2/i'c'e'(;, 

X 1 Wo'ldi'IR(+ll' 
w'- w~o' + i6/2 + 2/i'c'e'(;, 

l (8,+1)' 1 (8,-1)' 1 ]} 
X 48,' W 1 - w" + i6/2 48t' w'- w., + ib/2 

{ :::, + 1 ( 
- i q e ------o- 1 

2-z 

[ (8,+1) 2 

X 48,' 

Wo'ldi'IR<+ll') . 1 wo'ldi'IR<+ll' 
6/i'c'e'(;, ·w'- w,.' + i6/2 + 6/i'c'e'sz 

1 (8,-1) 2 1 ]} 
w1 - w,, + ib/2 · 48,' w1 - w,, + ib/2 ' 

(J) 'ldl' (4 3) 
fJ'+1 = qe. ;li'c' RH"(O)R<+l(O) [!(w 1,£,)+/(w1,s 2 )], • 

fl'-l ( W 1 ) = fl<+l• (·w 1 ), 

1 4 [ 81 + 1 1 
f(w > St) = zt 2~'< I I + '6/2 

B 'ot """1 (t) - Wta l 
(4.4) 

X (8, + 1)' 1 _ (8, -1) 2 1 ] 
48.' w'- w" + ifl/2 48,' w'- w., + ifl/2 

and the coefficient a<->( w ') is obtained from ( 4. 3) by 
means of the substitutions ~ 1 - ~ 2, R'•' - R<->. The 
frequencies w1a 2a 1s 2s and w'a 2a which enter in (4.3) 

' ' ' 1 ' and (4.4) and determine the physical processes that oc-
cur when an atom having energy levels (2.4) interacts 
with an intense monochromatic wave R(z), are given by 
the formulas 

w',,,,, =·w+ 1/,e(8,, + 1). 
(4.5) 

The intense-wave amplitude R(z) in (4.3) and (4.4) is the 
solution of Eq. (3.2), and the infinitesimal imaginary 
increment i o/2 in the denominators was introduced to 
ensure correct circuiting around the poles. 

In the general case, when the intense wave is ellip­
tically polarized, the components F<+l and F<-> of the 
weak radiations become coupled, as seen from (4.2), 
with a coupling coefficient 13<+>(w'), and the general solu­
tion (4.2) takes the form 

F'±1 (w', z) = c,'±1 ( w')e'•'•'h + c;±1 (w') e'•'•'h, ( 4. 6) 

where the roots r1,2(w') of the characteristic equation 
are equal to 

r,,,(w1 ) = 1/2(a'+1 + a'-1 + iv) 

± {'/, (a<+1 - a<-1- iy)' - I fl<+1 (w') I'}'''· (4. 7) 

Since r1,2 are pure imaginary, as seen from (4.3) 
and ( 4. 7), the parametric coupling of the components 
F<+> and F<-> does not lead to the occurrence of regions 
of exponential amplification, and can be attributed, as 
follows from (4.4), to a four-photon process of the type 
(R<+> + (F'-1) - (R<->) + (F'+1), which proceeds without a 
change of frequency. 

Since the coupling coefficient is proportional to 
13<•> ~ (47TcP/w2) · (1/a + i771), i.e., it does not contain the 
probability of the circular polarization, the components 
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F<•> and F<-> do not become coupled for a circularly 
polarized (17a = 17 1 = 0, 112 = 1) intense monochromatic 
light, and for each of them we can introduce a refrac­
tive index and an absorption coefficient. For the case 
when R<•> = 0 and RH ;,; 0, the latter are given by 

n;-t'(w')= 1 +~( 3 <::,+1 +3,+1 1 ) 
(I) ~.::.1 (t) - Wla1 ~82 of - W!!a' I 

(+) 1 [' 81 + 1 8z + 1 ·.. ] x, (w)=2nqe 3 28 , 6(w1 -w,.')+ 28, 6(w'-w,.') ;(4.8) 

n,<-> (w1 ) = 1 + qec { 3 (8, + 1)' 1 3 (8 2 -1)' __ 1 __ 
W 48/ w'- Wza 4Bz2 W 1 - Wz, 

(8,+1) 2 1 (8,-1)' 1 
+ 48,' ·W 1 - w,. 48,' w1 - ,.,,,}' (4.9) 

where the indices (±) pertain to the waves F<"'> and 
~2 = 3~1· 

Formulas (4.9) show that the component F<-> of the 
weak wave polarized along the same circle as the in­
tense wave experiences a split resonant absorption and 
amplification at the split three-photon frequencies 

(4.10) 

On the other hand, the component F<+>, which is circu­
larly polarized in the opposite direction, is only ab­
sorbed at the frequencies 

(4.11) 

Formulas (4.10) and (4.11) give the Stark shifts of the 
absorption-line components in the case of small non­
linearities. 

In the case when the intense wave is linearly polar­
ized, the weak-wave components polarized parallel and 
perpendicular to the intense wave are likewise not 
coupled. Thus, if the wave R is polarized along the 
x axis, then 111 = 0, 17 3 ;.< 0, and {3<-> = !3<•>, as a result of 
which Eqs. (4.2) enable us to introduce refractive in­
dices and absorption coefficients for the components 
F x, y of the weak field (2: = .ff'+T): 

n = 1 +~. [· (8+1)' _ (B-1)'] 
X 4wE? u/- Wa w'- Ws ' 

X,=;~~ [(B+ 1)'6(w1 - w,)-(8 -1)'6(w1 - w,)J; (4.12) 

qec 8 + 1 1 
n, = 1 + 4(n, -1) + 3---~----1 

w 2o ·W'- Wa 

4 + 3 8+1 I I) x, = x, nqe-,---- 6(w - w, . ( 4.13) 

Inasmuch as the shifts for a linearly polarized wave 
coincide (~1 = ~2 = ~, w1 a 1s = W2a 2 s = wa s• w~a = w~a 
= w~), the absorption line 'has two ~ompone~ts, wa and 
w~, and absorption at the second frequency is experi­
enced by the component Fy polarized perpendicular to 
the intense wave. A gain at the three-photon frequency 
Ws occurs in both components Fx and Fy. We note that 

in the case when the wave R is polarized at an angle rr/ 4 
to the x axis (17 1 ;.< 0, 17 3 = 0), there exist refractive in­
dices and absorption coefficients for the weak-wave 

components Fx ± Fy that are polarized at the angles 

± rr/ 4 to the x axis. 

5. PARAMETRIC FOUR-PHOTON INTERACTIONS 
WITH CHANGE OF FREQUENCY 

We now consider the passage of a weak wave in the 
same direction as the intense wave, i.e., we introduce 
in place of ( 4.1) the potential 

A= [R(z) + A,(z, t)}e''''-•" +c. c., 

!A,(z, t) I~ !R(z) 1. (5.1) 

We solve the problem in the same manner as in Sec. 
4. The polarization of the intense wave R will be as­
sumed circular ( ~ 2 = 3 ~ 1) or linear ( ~ 1 = ~ 2 = ~), since 
the general case is too cumbersome. 

In the case of circular polarization (R<•> = 0) we ob­
tain for the weak-wave Fourier components F<->(z, w 1

) 

the equation 

( :z + i w c w
1 
)FH (w', z) = 2iqe [ A,'(w')FH (w 1 , z) 

1 3 ' 
+A2(w1)exp[2iqz( 8 , + :::J]F'-''(2w-w1,z) ], 

(5.2) 

where the coefficients A1 ,2(W 1
) are given by 

(B, -1)' ' ( ')- (8, + 1)' 1 
.a .. 1 W -

48,' w,,- W 1 + iB/2 48,' w,,- w1 + iB/2 

+~ [-i::;z+ 1)'. 1 _ (B,-1)' 1 ] 
4 B,' w,- W 1 + iB/2 8 2' ;,,, - ~l' + iB/2 ' 

(5.3) 
, «Jo'ld!'RH''(O) { 1 ( 1 .\,(w)= -

24h'c2e2 B,' w,,- <•> 1 + i/5/2 W~o- w: + i6/2 ) 

+ :, ( ~"'- w~ + iB/2- w,,-) + i6/2 ) }· (5.4) 

An investigation of the roots of the characteristic 
equation (5.2) shows that F<-> interacts parametrically 
with the intense wave; this gives rise to a region of ex­
ponential amplification, which at small nonlinearities 
( ~ 1 ,2 « 1) is determined by the relation 

(w- W1 ) 2 < '/,e'£,. (5. 5) 

There is no parametric behavior for the component 
F<•>. The refractive index and the absorption coefficient 
for this component are 

, qec ( 3 8, + 1 8, + 1 1 ) 
n{+ = 1 +- - r;:;' I I+ 2,..., I I . 1 

W 2 ._.t (tha - W ~2 Wza - W 

r 3 8, + 1 8, + 1 ] 
x<+> =2nqe l---6(w1 -w,.')+--ll(w1 -w2.') , 

2 8, 28, 

(5.6) 

i.e., the passages of the wave F<+> parallel and anti­
parallel to the intense wave proceed in the same manner 
(compare with (4.8)). 

In the case of linear polarization (Rx ;.< 0, ~ = 0) we 
have for the components F x,y of the weak radiation 

/ F,,,( W 1 , z) = iA~x,v( w1 )F,,,( W 1 , z) + iA,,,, (w') e"''1' F,.:(2w- w', z), 

z (5.7) 

where the coefficients A1 , 2x,y(W 1) are given by 

A, (w1)=- w-w 1 +qe (8+1)' -qe (8-1)' 
' .c 8'(w.-w1 ) 8'(w .. -w') ' 

, w - W 1 
. 3 8 + 1 1 [ 1 w - W1 

) 
A,,(w) = ---+-2 qe ~( 1 1 ) --;- A,,(w )+-- , 

C ..:!. Wa - W lf_ C 
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, , 4qUlo'ldl' Rx'(O) 1 
A,,(Ul) = -4A,,(<il) = 31i' ,~ ( ')' ,~, 

c~ w-cu -e.::;. 
(5.8) 

The roots of the characteristic equations (5.7), calcu­
lated with the aid of (5.8), show that the components 
F x,y have regions of exponential gain. For F x this reg-

ion, as in the scalar theory, is determined by the rela­
tion 

(Ul- Ul')' < e'£, 

and for the y component of the weak radiation the fre­
quency regions where gain occurs is determined at 
~ « l by the inequality 

(Ul- Ul')' <,}~I 4. (5.9) 
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