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Stationary conditions for generation of an arbitrary number of Stokes components of stimulated 
Mandel'shtam-Brillouin radiation in an optical resonator excited by an external monochromatic beam are 
considered. General expressions are obtained for the intensities of all radiation components as depending on 
the intensity of the external incident field. Generation of stimulated Mandel'shtam-Brillouin radiation in the 
presence of a nonlinear absorber in the cavity is also investigated. It is found that under these conditions and 
in the steady state the phases of the radiation field components are related to each other in such a way that 
the omitted radiation consists of a set of successive pulses. 

INTRODUCTION 

THE process of stimulated Mandel'shtam-Brillouin 
emission (SMBE) has been so far investigated theoret­
ically to the greatest extent for the case when it occurs 
in a sample situated outside some optical resonator 
(see, for example, [11 ). The authors of papers devoted 
to SMBE in optical resonators (see, for example, [2• 31 ) 

have confined themselves to generation of one Stokes 
component, and furthermore only in the nonstationary 
regime corresponding to the start of its excitation. At 
the same time, the question of the stationary field os­
cillations remained open. The present paper is devoted 
to a theoretical investigation of this question, and the 
general case of generation of an arbitrary number of 
radiation components. Just as in [4• 51 (where the pro­
cess of stimulated Raman emission considered under 
similar conditions), it is assumed below that the mir­
rors of the open resonator reflect well both at the fre­
quency of the exciting beam incident on one of the 
slightly-transparent mirrors along the resonator axis, 
and at all the Stokes freqmmcies. Under these condi­
tions, we derive equations that describe the dynamics 
of the generation of the SMBE components, present a 
general solution of these equations for the stationary 
generation regime, and investigate on this basis the 
dependence of the number of the generated components 
and their intensities on the intensity of the exciting 
beam. 

We discuss also the generation of a number of Stokes 
components in the presence of a nonlinear absorber in 
the resonator. It is shown that under these conditions 
there can occur in the stationary regime a strong para­
metric (phase-dependent) interaction between the differ­
ent SMBE components. As a result, the total output ra­
diation takes the form of a sequence of ultrashort pulses. 
An important role in this synchronization of the SMBE 
components is played by the nonlinear absorber, in con­
trast to the stimulated Raman emission in an optical 
resonator, where such a synchronization of the stimu­
lated-emission components[eJ can be obtained also with­
out a nonlinear absorber, as a result of the intrinsic 
parametric interaction between these components. 

1. DERIVATION OF EQUATIONS 

Let an optical resonator filled completely with a 
homogeneous active medium be excited by an external 
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monochromatic beam of given intensity, incident along 
the resonator axis. We assume that mode selection ob­
tains in the resonator, so that only natural oscillations 
with the smallest transverse numbers, differing only in 
the value of the longitudinal (axial) index, can be excited. 
We assume also that the reflection coefficients of the 
mirrors can be close to unity for any number of Stokes 
and anti-Stokes frequencies and at the frequency of the 
pump wave. We confine ourselves below to the most in­
teresting case, when the Mandel'shtam-Brillouin shift 
wr is close to the difference between frequencies of 
neighboring resonator modes. In this case, obviously, 
an external beam of frequency close to one of these fre­
quencies will excite a corresponding axial resonator 
mode, and also a number of modes whose natural fre­
quencies are close to the frequencies of the scattering 
components. 

Thus, we can write the following expansion for the 
field in the resonator: 

E = _E.W,(t)E,(r), (1) 

where l is the order of the SMBE component and Ez(r) 
is the coordinate part of the natural mode having a fre­
quency close to the frequency wz of this component. For 
simplicity we shall consider a planar resonator. In this 
case the expression for the eigenfunction Ez(r) can be 
represented with sufficient accuracy in the form [71 

E,(r) = g,(r.d sin k,z; k, = nm,(L, (2) 

where L is the distance between mirrors (the z axis co­
incides with the resonator axis), and mz is an arbitrary 
(large) integer. The frequency wz corresponding to this 
mode is equal to wz = JTC/Ln(wz), where n(wz) is the re­
fractive index of the medium at the frequency wz. Under 
these conditions, obviously, the spectrum of the time­
dependent function .Wz(t) is concentrated near the fre­
quency wz. 

The stimulated Mandel'shtam-Brillouin emission is 
connected with the change produced in the dielectric 
tensor of the medium by the hypersonic wave generated 
in the medium by the external electromagnetic wave, as 
well as by the excited Stokes and anti-Stokes compo­
nents themselves. The dielectric tensor E is a function 
of the deviation p of the density in the acoustic wave 
from its equilibrium value. As usual, we confine our­
selves to the zeroth and first-order terms of the ex­
oansion of E in powers of p: 
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e = eo + ( iie / ijp) sP· (3) 

In the hydrodynamic approximation in a medium with a 
small heat-conduction coefficient, the equation for p is 
(see, for example, [11 ) 

ii'p [ , iip ] - E' - 1 ( iie) ---ll vp+f- =Y,Il , Y,=--- p,, 
!)t' at 8n iJp r 

(4) 

where p0 is the equilibrium value of the density, v is the 
speed of sound in the medium, r = (t + ~3 17 )/p0 , and t 
and 11 are the viscosity coefficients. 1> 

Substituting the expansions (1) and (2) into the right­
hand side of (4) and omitting the terms that are nonres­
onant with respect top (proportional to ttzttz•k• k * 0, 1), 
we obtain 

We have omitted also the terms proportional to ttz fSZ, 
since it can easily be verified that these terms, in the 
case of smooth functions gz(r 1), do not make a notice­
able contribution to the expression for p (we define a 
function as smooth if the scale of its variation along 
r 1 is much larger than the length of the light wave 
27r/kz). Starting from the form (5) of the right-hand 
side of (4), we can seek a solution for p in the form 

p = .E p,(t)A,(r), 

A,(r) = 2k,'g,g11 ,cos [(k,+t + k,)z]. 

Then the equation (4) breaks up into the system 

p, + 27ip, + w,'p, = Y,lt,(t)lt,+,(t), (6) 

where 2h = 4k~r and w~ = 4kzv2• Writing down Maxwell's 
equations for the field in the resonator in the form of a 
system of equations for the time variation of the coeffi­
cients <Wq(t) of the expansion in the oscillation modes, 
we obtain 

= 4:~,( ~:) 8
_Ea,1p1/t 21+1_,+Re[P,e-'P']; 

l 

Lk12 

a,, = 2 J (g,g,+,) (g,g,+,_,) dr~, 

2 

F,=~s (P,E,-M,H,)dv; 
N, 

1 
N, = - J eoE.' dv > 0 

4n 

(7) 

is the norm of the mode Eq; P0 and M0 are the complex 
amplitudes of the extraneous polarization and magneti­
zation, which are determined by the external exciting 
electromagnetic wave; Qq is the figure of merit of the 
mode Eq, and p is the frequency of the exciting beam. 
The system (6) and (7) describes the dynamics of the 
SMBE process under the considered conditions. 

2. STATIONARY GENERATION OF SMBE COMPO­
NENTS 

We make the change of variable t = t 1 /P in Eqs. (6) 
and (7), and for simplicity we again denote the dimen­
sionless time t 1 by t. Then the initial system takes the 
form 

11When solving Eq. (4) for the case of SMBE in a resonator we can, as 
usual, disregard the presence of the boundaries of the medium, since 
the mean free path of the phonons taking part in the SMBE process is 
much smaller than the dimensions of the medium. 

where 

n. 
h=-. 

- tlh 
Q,=-. 

p p 

Y, 
Yp=-2' 

p 

P, 
F,=-. 

p' 

(8) 

To investigate the stationary solutions of the obtained 
system of equations, we make the substitutions 

8, = '/,Y,exp [-t(Q.-Il.)t] + c.c., 
(9) 

p, = 1/ 2X,exp [-i(QI+,- Q,)t] + c.c., 
where 6-q are constants and will be determined below. 
Substituting these expressions in (8) and averaging over 
the fast oscillations (this is justified because the system 
(8) is nearly conservative), we obtain 

i'. = -(f.',+ ill,) Y. + 

(10) 

where 

~~. Q, ( iie ) <tl 
~'• = 2Q, ' y, = 16:rtN0 ap s ' a, =a,, •-" 

We now consider the stationary solutions of (10), put­
ting Yq = 0 and Xq = 0. Eliminating Xq, we obtain the 
following system of algebraic equations for the Yq: 

Y.[- (ftq +ill,)+ (P.(I) I Y.+tl'- p,12) I Y.-,1') l + iF,6,, = 0; 
(11) 

<•l y.Y,a0121 (2l y.Y,a.'ll 
P, = - Po = --:::::-_ _c._'-'--"---

2Q0(h+i6,) 2Qq-~(h+t6._,) 

Each term in the left-hand side of (11) has a definite 
physical meaning. The first term in the square brack­
ets is due to the intrinsic attenuation of the field in the 
resonator in the absence of SMBE. The second term 
corresponds to two-photon Stokes transitions for all 
pairs Ez and Ez_ 1 of neighboring radiation components, 
and the term iF 0 oq0 is due to the external exciting beam. 
Thus we see that in the stationary generation regime the 
SMBE components interact only through two-photon 
transitions, and it is therefore clear (see also below) 
that at q :5 - 1 only the modulus of the corresponding 
amplitude Yq will be determined for each component, 
and the phase is arbitrary. The component Y0 , accord­
ing to (11 ), should be fully determined, since its phase 
is determined by the phase of the exciting beam. 

The system (11) has the same form as the system of 
equations for stationary field oscillations in the case of 
stimulated Raman emission in a dispersive medium. 
The latter was investigated by one of the authors, [51 

and only the results will be given here. For conve­
nience we shall denote the solutions of (11) for station­
ary amplitudes by a tilde. The values of I Yq 12 depend 
on I F0 12 or, which is the same, on I Z0 12 , where Z0 

= iF0 /(~0 + i6.0 ) is the complex amplitude of the field 
. oscillations that would be excited in the resonator by 
an external beam if there were no oscillations at the 
Stokes frequencies. The aforementioned dependence is, 
in particular, such that Stokes components of ever -in­
creasing orders are excited in succession with increas­
ing I Z0 12 (the amplitudes of the anti-Stokes oscillations 
are equal to zero at any pump-wave intensity). 
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The threshold value of I Z0 I~ at which the m-th 
Stokes component appears is given by 

I ~lm-1) I D(~(m1), m = -1, -3, ... 
\Zo\m' = \ (12) 

~~'"' 1 D (fil"'-"), m = -2, -4, ... 

where 

alo> = al-n = 1, ~~o> = ~l-11 = 0, ~~-'' = ~-1, ~~-'' = ~-z, 

a 1,, = 1 a1, 11,,, for q = -2, -4, ... 
l al,l-1/2,, for q = -3, -5, ... 

f ~~·~"·, for q = -4, -6, ... 
~(q) = 

\ Pl•l-1/2,, for q = -5, -7,... (13) 
• 11.-1 h. 

Ukq = II Uq+21-1, 

I= I 

~Rq = .E ( II aq+zu+t) Bq+21-t + Bq+2k-tt 

1=1 /•=1+1 

(P~t', p~>' and p~u", p~2>" are the real and imaginary 

parts of the numbers P~t and p~>). 
It follows from (12) that the inequalities I Z 0 I~ 

< I Z0 ~~- 1 are always satisfied (m is an arbitrary 
negative integer). In the interval I Z0 I~ < I Z0 12 

< I Z0 1~-u only the amplitudes I ?q I of the components 
with q ? m differ from zero, and the expressions for 
these quantities differ in accordance with whether the 
total number m of the generated frequencies is even or 
odd. At odd m we have 

a~'' [ 'l' ( ~~:~,',)- ~ 1"']. q = -1, -3, ... ~ m 
JY,I'= 1 (14) 

""(q")(~lm-1)- ~<•>), q = 0, -2, -4, ... > m 
a 

where 
'l'(y)=IP~11 1-' {-(fto~:2)1 + ~oP:''") 

+ [I Po121 I '(fto2 + ~o') (y- 1) + (ftoPd21' + ~oPo12111 ) 'J'''}. 

At even m 

( 
_ 1 (~lm-1) _ (ql) 

ly \'- a''' . ' 
q ~ 1 

'"'{q)[\Zo\' D(~lm-tl) ·- ~<•>], q = 0, -2, ... ~ m 
u 

q = -1, -3, ... > m (15) 

The quantities t.q (which determine the oscillation fre­
quencies of the corresponding components) are given 
for all m by the formulas 

Llq=p~0" 1Yq+tl 2 -pq< 2>"1Yq-tf 2, q=-1,-2, ... , (m+i), 

' (0/( 2 
~m = Pm \f'm+,J . 

(16) 

It follows directly from the derived expressions that 
if the total number of Stol<:es components excited in the 
resonator is odd, then the intensities of the beams 
emerging from the resonator with frequencies of the 
even components do not d<~pend on the pump-wave in­
tensity, whereas the intensities of the odd components 
increase monotonically with increasing pump intensity. 
On the other hand, if the total number of excited Stokes 
components is even, then it is the output intensities of 
the beams with frequenciE~s of all the odd components 
which are independent of the amplitude of the external 
beam, and the intensities of the even components in­
crease with increasing ineident intensity, but the de­
pendence, unlike the prec,eding case, is linear. 

To gain a more complete idea of the dependence of 
the oscillation intensities of the different Stokes com-

ponents on the intensity of the exciting beam, the figure 
shows plots of the corresponding quantities. We present 
also an explicit expression, which is useful in calcula­
tions, for I Z0 12 as a function of the complex amplitude 
of the field intensity E+ of the incident beam on the sur-
face of the first mirror: 1 

IT, I' j' JE+godS I• 
\Zo I' = -=---'~..,..,..-::-:-: 

(~-to'+~,') (koL)'- J go' dS ' 
(17) 

where T1 is the complex transparency coefficient with 
respect to the electric field for the first mirror at the 
frequency of the incident beam. With the aid of (12) and 
(17) we find immediately that for typical media (carbon 
disulfide, diethyl ether, etc.) at a mirror reflection co­
efficient on the order of 0.8 and at a resonator length 
~2 em the threshold intensity I1 of the incident beam, 
needed to generate the Stokes radiation, is of the order 
of 1 mW/cm2 • The intensity of the field oscillations in­
side the resonator are of the order of I Z0 1~ 1 (i.e., on 
the order of 10 mW jcm2 ). It also follows from these 
expressions that with increasing intensity of the excit­
ing beam, at mirror reflection coefficients independent 
of the frequency, the intensities of the different compo­
nents in the resonator increase like I m - q - 1 II Z0 1~ 1 • 

3. GENERATION IN THE PRESENCE OF A NON­
LINEAR ABSORBER 

Let us consider now a case when a homogeneously 
distributed nonlinear absorber is introduced into the 
resonator (for example, a dye solution), and leads to 
the appearance of an imaginary increment E" to the di­
electric constant of the active medium in the resonator: 

e" = 4nia I (1 + ~E'), (18) 

where the bar denotes averaging over the fast oscilla­
tions, and accordingly the quantity 1:2, expressed in 
terms of the complex amplitudes Yq, can be written in 
the form 

E' = '/, E Y,Y,: exp {-i(Q,- Q,,)t} E,E,,, 
l,l' 

and 01 and (3 are real numbers. The relation (18) is usu­
ally connected with saturation in a two-level system in 
the stationary regime, and is therefore valid only if the 
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time scale of the variation of ~ as a function of the 
time is much larger, at all t, then the time of transverse 
relaxation, an assumption which we shall make from now 
on. 21 In addition, at a sufficiently small nonlinearity co­
efficient (3 and a limited value of ~ (which is certainly 
satisfied at a finite number of excited natural modes of 
the resonator) we can put approximately 

e" = 4nia(1- ~E'). (19) 

In the right-hand side of the system (10), for the 
complex amplitudes of the oscillations of the SMBE 
components, we should now add the term corresponding 
to the polarization current due to the nonlinear absorber. 
Equations (10) then transform into a system of equations 
of the following type: 

¥, =- (11, + i~,) + iy,[a~0 x,_, Y,_, + J:> x; Y,+,] 

- 4~' {a Ly,, exp[- i(Q,,- Q,)t] J (E,,E,)dv 
q l" 

- ~ ~Y,Y,.•Y,,exp[-i(Q,+Q,,-Q,.-Q,)t]· 
1,1',1" 

· J (E,E,.) (E,,E,)dv }+ iF,6,,. (20) 

It is easy to verify that the first term in the curly 
brackets differs from zero only when Z" = q, and the 
second when l" = q + l' - l. Under real conditions, 
owing to the inversion of the refractive index of the 
medium, the contribution of the terms with Z' = q + s 
+ k and l = q + s decreases with increasing I s I and 
I k I (owing to the increase of the oscillation frequencies 
of the corresponding exponential factors in (20)). Taking 
this into account, we shall henceforth consider for sim­
plicity the following model: we assume that all the terms 
with I k I > 1, Is I > 1 are equal to zero (the number s is 
arbitrary at k = 0, and vice versa), whereas when I k I 
!" 1, Is I !" 1 the frequencies of the oscillating terms 
will be assumed equal to zero. Such an approximation 
is justified by the fact that we are interested only in the 
relation between the phases of the radiation components 
(of the quantities Yq = I Yq I e~ <l>), and the exact values 
of the moduli I Yq I of the corresponding amplitudes 
are of no principal significance. 

If the frequency of the external exciting beam coin­
cides exactly with one of the natural frequencies of the 
resonator, if the Mandel'shtam-Brillouin shift is exactly 
equal to the difference between the frequencies of two 
arbitrary neighboring resonator modes, and if the re­
flection coefficients of the mirrors are small at the 
anti-Stokes frequencies (i.e., Yq = 0 at q !" 1), then the 
equation for the complex amplitudes of the stationary 
oscillations of the field components take the form 
(q !" 0) 

I'J,Y, + iF,6,, + 2x, Y,_, Yq" Y,+, + x,(Y<+,)' Y,:, + x,(Y,_,)' Y,~, = 0; 

21The quantity a in ( 18) is positive at normal population of the energy 
levels in question, and negative in the case of inversion. In the latter 
case, self-excitation of the field oscillations in the resonator is possible 
without an external exciting beam, i.e., the role of the nonlinear 
absorber can be played by the active laser medium itself. 

ttl I' t•> I I' a~2, JE'd -2 ~ IY I' 1'],=-f-L,+P, IY,+l -p, Y,_, --- • v+ x,~ , , 
4N, "'' 

(21) 

iF 0 = I F 0 I ei '~~a, and 'II 0 is the phase determined by the ex­
ternal exciting beam. Comparing (21) with (10), we see 
that in the presence of a nonlinear absorber there is pro­
duced between the SMBE components an interaction de­
scribed by the last three terms of (21). Multiplying both 
sides of the equation by Yq and summing over q, we can 
easily verify that the phase of the amplitude Y0 is equal 
to '110 , i.e., it is determined by the external exciting 
beam, just as in the absence of the nonlinear absorber. 
Taking this into account and solving the system (21) in 
succession for all q !" 0 (starting with q = 0) we verify 
that the phases <I>q of the radiation field components Yq 
are connected by the relation 

Ill,= ll>o + lql ($_,-Ill,)+ nm,, 

where mq is a definite integer and the phase <I> _1 of the 
first Stokes component is arbitrary. 

Relations (22) mean that the entire aggregate of the 
SMBE components is broken up into two groups, in one 
of which 

(23) 

and in the other 

(24) 

Since (23) and (24) are analogous, let us consider for 
concreteness the first of them. If relations (23) are 
satisfied and the number of generated components is 
large enough, then the total output radiation will be a 
sequence of ultrashort pulses separated by the time in­
terval T = 2JT/wr, and the duration of each pulse Twill 
be of the order of T/N, where N is the number of gen­
erated Stokes components. Thus, at a typical Mandel'­
shtam-Brillouin shift wr ""' 0.1 cm-1 and N ~ 100 we ob­
tain T""' 3 x 10-12 sec. 

In conclusion, we note that inasmuch as the number 
of generated Stokes components depends on the intensity 
of the exciting beam, the duration of the pulses can be 
varied over a wide range by varying the incident inten­
sity. 
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