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A kinetic equation for phonons interacting with sound whose frequency is much greater than their inverse 
relaxation time is obtained by the method of decoupling of the Bogolyubov chain of equations for the 
quantum distribution functions. In addition to the usual Peierls-Boltzmann collision integral, this equation 
contains an additional collision term which is proportional to the intensity of the sound wave. The laws of 
conservation of the total quasimomentum and energy of the phonon gas are derived on the basis of the 
kinetic equation with account of phonon drag and heating by the sound. Conditions are formulated under 
which the state of the gas of thermal phonons interacting with high-frequency sound is quasiequilibrium and 
hence the conservation laws may be regarded as phonon hydrodynamic equations. 

IN very pure dielectric samples, the propagation of 
high-frequency sound at low temperatures is accom­
panied by dragging of the thermal phonons by the sound 
wave, and by the appearance of a drift of the phonon 
gas. By high frequency (HF) here we mean sound whose 
frequency is much greater than the inverse relaxation 
time of the thermal phonons. This acousto-thermal ef­
fect has been studied previously by the author Y•2 J 
Consideration in(1,2 J was based on the hydrodynamic 
equations, which describe the motion of the phonon gas 
in the limit ZN « Zu, where ZN and Zu are the main 
path lengths of the phonon relative to normal processes 
and Umklapp processes, respectively. The dragging and 
heating of the phonons by the sound have been considered 
purely phenomenologically, by adding to the hydrody­
namic equations additional terms whose form was 
established by means of simple physical considerations. 

The purpose of the present research is the system­
atic microscopic derivation of the kinetic and hydrody­
namic equations for phonons interacting with high-fre­
quency sound waves. A detailed analysis of the effect 
of the sound on the state of the phonon gas in the crystal 
allows us to establish the limits of applicability of the 
equations of phonon hydrodynamics used in r 1 •2 l, It will 
be shown below, in particular, that the usual condition 
of the predominance of N processes over .all forms of 
scattering with losses of quasimomentum in the given 
case no longer guarantees the legitimacy of the hydro­
dynamic approach. Furthermore, the derivation of the 
kinetic equation for phonons interacting with high­
frequency sound is of interest in its own right. On the 
basis of this equation, we can compute the sound ab­
sorption coefficient in those cases in which the sound 
wave brings about an appreciable departure of the state 
of the phonon gas from equilibrium. Such a situation 
arises, for example, in the propagation of longitudinal 
sound in dielectrics at low temperatures.r3 • 4 l 

In what follows, we shall assume that the sound fre­
quency 0 « T/11 and ZNr ¢:: 1, where T is the tem­
perature of the crystal and r the sound absorption co­
efficient. 

1. THE HAMILTONIAN 

Since we are interested in low temperature effects, 
we shall consider the crystal as an anisotropic elastic 
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continuum and limit ourselves to account of anharmon­
ism of third order only. Then the energy density of the 
elastic deformations will have the form 

(1) 

where AijkZ is the elastic modulus tensor and Kijklmn 
the tensor of anharmonic elastic constants. The com­
ponents of the deformation tensor Uij are expressed in 
well known fashion by the deformation vector u( r): 

1 ( iJu, Ou; Ou, Ou,) 
Uij=- -+-.-+-- ' 

2 Ox; dx, Ox, Ox; 
(2) 

where the Xi are the components of the radius vector 
r. We introduce the phonon Bose operators aA.(q) and 
aA.•(q): 

(3) 

Here q, wA.(q) and eA(q) are the wave vector, frequency 
and polarization vector of the phonon mode, A the index 
of polarization, p the density of the crystal and V the 
normalized volume. Using {1) and {3), and after some 
transformations, we can obtain the Hamiltonian in the 
form 

/1 = .E nw.(q) [a. +(q)a.(q)+ '/z] + _t_" (_!!_)'!, 
•• V'J. 2p {4) 

X .E ~M"~'(q,q',q")d(q- q1 - q") [a.+(q)a,(q 1 )a,(q")- H.c.], 
all-; qq'q" 

where H .c. denotes the Hermitian conjugate, ~ ( 0 
= Do~ is the Kronecker symbol and 

2JJ"i'Y ("•, '!', q") = L'(lY ("' '· •. "> + l/-(l (•·· .• ", h') + L'1"Y (" ', "· IJ") 

·'· L:'Y" ( ', q", r) f- L'"f' { ", ·, :,') !· L''-"" ( ", q', '), {5) 

£"~V( I ")= et(q)q;+et(q)q; [f .. '(I) I '( ") II 

q,q ,q 4[w.(q)w~(q1)w,(q")J'h .,,.,em q q, e'" q q, 

+ '/,x.;>lmn(e.'(q1)q/ + e,'(q') q,') (em'(q") q/1 + en'(q") qm") ]. 

We note that the coefficients M a( {J Y, ") are not altered 
q,q ,q 

by any permutation of their arguments. 
In high-frequency sound propagation in the crystal, 

the field of deformations has a coherent (acoustical) 
component and an incoherent (thermal component. We 
take this fact into account by means of a transforma­
tion suggested by Tyablikov:rsJ 
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a,(q) = b,(q) + B,(q), a,+(q) = b,+(q) + B,'(q). (7) 

The operators b.\ ( q) and b~ ( q) correspond to the field 
of thermal phonons and obey the usual Bose commuta­
tion relations. Furthermore, 

(b,(q)) = (b,+(q)) = 0, (8) 

where ( ~ ) = Tr ( ~ p ), p is the density matrix of the 
system. The amplitudes BA(q) and B;\(q) are c-num­
bers and describe the coherent sound field, and 

B,(q) = (a,(q)), B,'(q) = (a,+(q)). (9) 

The Hamiltonian (4) does not contain a term correspond­
ing to Umklapp processes; however, this is not essen­
tial for us. Actually, at low temperatures, the colli­
sions of sound phonons with the thermal ones, which is 
accompanied by the Umklapp, take place much more 
rarely than the normal collisions. So far as U proc­
esses with the participation of thermal phonons only 
are concerned, the derivation of the corresponding 
collision integral in the kinetic equations does not have 
much intrinsic interest, inasmuch as it is entirely 
similar to the derivation of the collision term for N 
processes, which will be given below. 

2. THE KINETIC EQUATION 

For the description of the state of thermal phonons 
in a crystal, we use the Wigner distribution function: 

Using the equations of motion for single-particle 
density matrices (SDM) ( b~( q- k/2)ba (q + k/2)), it 
is easy to obtain the first equation of the Bobgolyubov 
chain: 

on.(r,q) aw.(q) an.(r,q) =(-h-)'/,~ e'•· 
at + aq or 8Vp' ~ 

x}: [M"''(q- ~,q-p-: ,p)(a,+(p)a,+(q-p- ~) 
,,. 

X b. ( q + ~ ) ) + M"" ( q + ~ , q - p + ~ , p) 

x(b•+(q- ~)a,(q-p+ ~)a,(p)) 
(11) 

-2M"" (q- ~ ,p -q+ ~ ,p )( a.+(p)a, (p-q+ ~)b.( q+ ~)) 

-2M"'' ( q + ~ , p- q- ~ p) (b.+ ( q- ~) a,• ( p-q- :) a,(p))] . 

In writing (11), it has been taken into consideration that 
the average of the form ( a•A(q)b.\'(q')) can always be 
replaced by ( b~ ( q) b.\' ( q')), as follows from (7) and (8 ). 
For the derivation of the kinetic equation it is further 
necessary to express the average of the products of 
three Bose operators in (11) in terms of single-particle 
density matrices and the amplitude of the sound wave. 
This procedure is analogous to the calculations per­
formed in the derivation of the kinetic equations for 
the electron-phonon system,r 6 • 7l and we shall not go 
into it in detail. We only note the following features. 
In splitting the Bogolyubov chains of equations to obtain 
the kinetic equation in the usual form, it is necessary 
to neglect averages of the type ( aA(q)aA'(q')) and 
( a A( q) a~' ( q')). As Zil 'berman has shown, Pl this can 

be done only in the absence of a reflected sound wave 
in the crystal. The remaining averages can be repre­
sented in the form 

(a,+(q)a,.(q')) = (b,+(q)b,.(q')) +B,'(q)B,,(q') (12) 

and similarly for (a A ( q) a~' ( q')). We note that for 
1 q - q' 1 :S d-\ where d is the characteristic dimen­
sion of the spatial inhomogeneity in the system, the 
elements of single-particle density matrices that are 
nondiagonal in the polarization index are quantities of 
higher order of smallness relative to the diagonal ele­
ments. Inasmuch as both the diagonal and the non­
diagonal elements of the index are practically equal to 
zero in the case 1 q - q' 1 > d-I, we can assume that 

(b,+(q)b,.(q')):::::! (b,+(q)b,(q'))O,,, 

(b,(q) b,,+ (q')) :::::! (b,(q) b,•(q'))O.,. 

These same relations are also valid for the average 
(a~(q)a.\'(q')) and (a.\(q)a~'(q')) since the ampli­
tudes BA ( q) and Bl' ( q') differ from zero only for 

(13) 

A = it' = a, where a is the sound polarization index. 
By following further the well known research of 

Bogolyubov and Gurov ,fB1 we can immediately obtain 
the kinetic equation for lla(r, q). In the derivation, an 
assumption is made on the smallness of the mean wave­
length of the thermal phonons in comparison with d and 
the fact that the width of the sound spectrum cannot be 
less than r is also used. Omitting the very cumber­
some, but in fact elementary calculations, we obtain: 

iin.(r,q) + aw.(q) an.(r,q) IN+Is; (14) 
at oq ar 

rth ~ Is =~N(r) "'-.l {[M"'"(q,s- q,s) ]'6[w.(q)+ w,(s- q)- Q] 
p ' 

x[n.(r, q) + n,(r, s- q) + 1] +[M"''(q, q + s, s) ]' 6[w.(q) + Q-w,(q+s)] 

x[n,(r, q + s)- n.(r, q)] + [M"'"(q, q- s,s) ]' 
X6[ w. (q)- w,(q- s) -.Q] [n,(r, q- s)- n.(r, q) ]}, (15) 

where IN is the Peierls-Boltzmann collision integral,r 9J 
in which only N-processes are taken into account, s 
and q are the wave vectors of the acoustic and thermal 
phonons, respectively, and 

N(r)= }:e'••s;(p- ~)s.(p+ ~) (16) 
pk 

is the total number of acoustic phonons per unit volume. 

3. THE CONSERVATION LAWS AND THE HYDRODY­
NAMIC EQUATIONS 

We now add to the kinetic equation (14) the collision 
integral Iu, which describes the U-processes with 
participation of thermal phonons only. Then, multiply­
ing (14) by nq and summing the result over q and a, 
we get 

aP A ( aP ~ ( ap) -+divii= - + - ; 
at at u at • 

(17) 

1: 1: aw.(q) 
P= hqn.(r,q), fL;= hq,---n.(r,q), 

iiq; 
o:q aq 

(a~) u= }:n«ilu, (18) 
aq 

Here we have used the well-known property of the inte­
gral of normal collisions : 
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The collision term (aP/<H)s, with account of the sym­
metry of the coefficients MCif3Y(q, q', q") relative to 
permutations of their arguments can be represented in 
the form 

(~) = hsN (r)__::!!_ ~ {[M"'"(q, q- s, s) ]' /) [Ola(q)- 011 (q- s) -Q] 
at s Vp' ~ ... 

X [nl(r, q- s)- n.(r, q)] + '/,[M"'"(q, s- q, s) ]'· 

X6(Q-Ola(q)-Ol,(s-q))[na(r,q)+n,(r,s-q)+1]}. (19) 

The product tisN(r) is the density of the quasimomen­
tum of the sound wave Ps and the remaining terms in 
(19) represent the absorption coefficient r multiplied 
by the sound velocity c, as is not difficult to establish. 
Finally, the law of conservation of the total quasimo­
mentum of the phonon gas will have the form 

iJI'/ iJt + div fi = (iJP I ot)u + cfPs. (20) 

The energy conservation law for the phonon gas in 
the presence of heating of the phonons by sound can be 
obtained in the same way: 

oE/ot + divQ = cfEs, (21) 

where 

E ~ h ~ iJOla(q) 
= ~ Ola(q)n.(r,q), Q=~liOla(q)-iJ-q-n.(r,q) (22) 

~q etq 

and Es the energy density of the sound wave. 
The conservation laws (20) and (21) are in fact the 

desired hydrodynamic equations that describe the 
motion of the phonon gas in the crystal in the hydrody­
namic limit. In this case, the state of the phonon gas is 
a quasi-equilibrium one and can be completely charac­
terized by the values of two hydrodynamic parameters­
the drift velocity and the temperature. As is well 
known,r 10J in the absence of high-frequency sound, such 
a state is realized if the normal collisions of thermal 
phonons take place much more often than collisions 
with loss of quasimomentum, i.e., IN>> Tu. In the 
case of interaction of thermal phonons with high-fre­
quency sound, this condition is no longer sufficient, and 
it is necessary to add a limitation on the value of the 
collision integral Is: 

(23) 

The inequality (23) essentially means that the rate of 
injection of quasimomentum and energy from the sound 
wave into the gas of thermal phonons should be much 
less than the rate of thermalization of the transferred 
energy and quasimomentum. It is clear that only upon 
satisfaction of the condition (23 ), together with the con­
dition IN» Is, will the state of the phonon gas be 
practically in quasiequilibrium. Estimating IN and Is, 
we can show that the inequality (23) reduces to the 
following: 

(24) 

In conclusion, we note that by substituting the Bose­
Einstein distribution with drift in (18) and (22), we can 
obtain the hydrodynamic equations from (20) and (21) 
for the drift velocity and the temperature, which we 
shall not write down here, for brevity. In the equations 
obtained in this fashion, however, viscous terms will 
be absent. These terms can easily be obtained if we 
take into account the finiteness of lN; they have the 
same form as in the case of absenc~ of high-frequency 
sound.r 10• 11 l 

The author is grateful to 0. G. Vendik for discussion 
of the results and for useful advice. 
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