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It is shown that in a quantizing magnetic field there exist bound electron and optical phonon states produced 
by electron-phonon interaction which is quadratic with respect to lattice displacements. The role of this 
interaction in the bound state problem is evident from the fact that the binding energy is proportional to the 
square of the quadratic interaction constant and to the fourth power of the linear interaction constant. A 
complete solution of the problem is obtained for a model Hamiltonian in which the interaction depends only 
on the momentum transfer. This solution corresponds to a local potential. In addition, an integral equation, 
which corresponds to a more realistic description of polarization interaction, is also derived and analyzed. 

INTRODUCTION 

IT has recently been shownP•2 J that the energy spec­
trum of an electron in a strong magnetic field, interact­
ing with optical phonons, includes a set of levels which 
can be interpreted as the bound states of an electron 
and a phonon. These levels are located somewhat be­
low the phonon energy tiw 0 , calculated from the bottom 
of the lowest Landau zone, and are concentrated at this 
energy, which is the decay threshold. The ordinary 
Hamiltonian of electron-phonon interaction HJ.~t was 
used infl,zJ: this Hamiltonian is linear in the phonon 
amplitude u or, what amounts to the same thing, in 
the creation and annihilation operators of the phonons, 
bq and bq. Here the binding energy W was shown to 
be proportional to {3\ where {3 is a dimensionless co­
efficient which is proportional to the interaction Hi~t 
(in p,zJ it was assumed that a ~ {32 ). Naturally, along 
with H~ 1lt' there always exists the interaction H~ z)t• 

1n 1n 
which is quadratic in u; in most cases, the contribu­
tion from Hirit at low temperatures T « tiwo is small 
in comparison with the contribution from W llt in terms 

m 
of the parameter u0 /d, where u0 is the amplitude of 
the zero oscillations and d the lattice constant. How­
ever, in the problem of the bound states of an electron 
and a phonon, the comparative roles of the linear and 
quadratic interactions must be determined differently. 
The reason for this is the following. The Hamiltonian 
H~ l)t contains b and b+ linearly and does not conserve 

m 
the number of phonons. Therefore, in order to obtain 
the Hamiltonian, by means of which we can consider 
the dynamical system "electron + single phonon," it is 
necessary to subject the Hamiltonian of the system 
"electron+ phonon field" to a canonical transforma­
tion and, in some approximation, exclude the terms 
which do not conserve the number of phonons. This 
can be done, for example, if the coupling is weak, i.e., 
H~ llt/hw 0 :::::! {3 « 1, which will be assumed. After such 

ln 
a transformation, the role of interaction will be played 
by the term H~ l)t' which contains b+b and bb+ and is 

ln 
proportional to {3 2 ; precisely this term must be equal 

lar crystals are concerned, and also electrons in nar­
row-band semiconductors, it has already been shownr3 J 
that the change in the vibration frequencies, described 
by Hirit• makes as important contribution to the coup­
ling energy as a shift in the equilibrium position of the 
oscillators, which is described by Ririe 

In the following, we shall cinsider only the interac­
tion of HJ.~t and shall assume that the terms bb and 
b+b+, which do not conserve the number of phonons, are 
also eliminated by the canonical transformation, so that 
the interaction has the form 

(1) 

Here a and q are the index of polarization and the 
momentum of the phonon, r the coordinate of the elec­
tron, V the normalized volume, and y the matrix ele­
ments of the interaction. Inasmuch as the Hamiltonian 
chosen in this fashion strictly conserves the number of 
phonons, its eigenstates can be classified by the number 
of phonons. 

1. SPECTRUM OF BOUND STATES. THE MODEL 
HAMILTONIAN 

In order to obtain a c"tear solution of the problem of 
bound states, we first consider the simplest model, in 
which the electron interactions with one branch of pho­
nons and, what is more important, y depends only on 
the absolute value of the momentum transfer K = q - q' : 

v(q, q') == v(K). (1.1) 

Then, limiting ourselves to states with one phonon, and 
changing over to a configurational representation with 
respect to the phonon coordinates Q, we obtain the 
interaction in the following form: 

1~ .. H,., = v ""-' v(K)e•KR ""'v(R), (1.2) 
K 

where R = r - Q is the relative coordinate of the elec­
tron and phonon. 

to H~ z)t. It is then seen that the role of H~ 2 )t can be very m m 

Assuming that the dispersion of the phonons is un­
important, we have w(q) = w0 , i.e., by actually 
neglecting the kinetic energy of the phonon, we have the 
following Schrodinger equation for the electron +phonon 
system in a magnetic field: 

important in the problem of the bound states. 
It should be noted that, so far as excitons in molecu-
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L~ ( p- ;c [Hr) )'+tiro,+ v(lr- Ql)] 'l'(r, Q) = E'l'(r, Q), 

(1.3 )* 
where m is the effective mass of the electron and an 
axial gauge is chosen for the vector potential. It is 
convenient to make the gauge transformation 

'l'(r,Q) =exp{-le.[HQ]r/2c}'l''(r,Q), (1.4) 

which actually means the choice of the initial origin of 
the vector potential at the point where there is an im­
mobile phonon. Then Eq. (1.3) is transformed into 

[ :m (P- ;c[HRJ)' +liro,+y(R) ]'l''(r,Q)=E'l''(r,Q), (1.5) 

where P is the momentum conjugate to R. It is now 
seen that the Hamiltonian does not contain Q and the 
solution can be chosen in the form 

'¥'(r,Q) ="ljl(R)x(Q), (1.6) 

where x is an arbitrary function. Thus, the transfor­
mation (1.4) allows us to use the translational sym­
metry and to separate the motion of the mass center, 
which is identical in the given case with the position of 
a phonon having infinite mass. 

We now regard y(R) as a perturbation, sufficiently 
small that it does not mix the Landau levels En 
= fiwc(n + Y2). Furthermore, because of axial sym­
metry, y does not mix states with different values of 
the projection of the angular momentum M, in which 
these levels are degenerate. We can therefore assume 
that 

(1.7) 

where 1/JnM is the Landau function and R1 and Z are the 
transverse and longitudinal (relative to -H) components 
of R. Substituting (1.7) and (1.6) in (1.5), multiplying 
by zp~(Rl) and integrating over R1 , we find the fol­
lowing equation for cp : 

fi' d' 
[- 2m dZ' +YnM(Z) ]<Jl(Z)= W<j>(Z), (1.8) 

where the role of the potential is played by the quantity 

(1.9) 

and W is the energy measured from threshold: 

W=E-E.-firo, (1.10) 

The equation for cp is the Schrodinger equation with 
a shallow one-dimensional well,r 4 l and therefore has a 
single bound state (for each nM) with binding energy 

m[ z 
IW.,..I=w J y(R) I'~>•M(R.t) l'dR) (1.11) 

and the wave functions 

(1.12) 

Of course, such a state exists only when the potential 
YnM is attractive, i.e., the integral in (1.11) is nega­
tive. It is seen from (1.11) that the binding energy de­
pends on the Landau level n at which the electron (in 
its motion relative to the phonon) is located, and on the 
of the relative-motion angular momentum M, i.e., the 
interaction as it were removes the degeneracy in M 

*[Hr] =H X r. 

existing in the free electron. Each level of the bound 
state is infinitely degenerate in view of the arbitrari­
ness of the choice of the function X ( Q). It is seen from 
the solution thus found that the spatial separation of the 
electron and the phonon across the field is determined 
by the magnetic length A = (en/ eH )112 and its order 
does not depend on the binding force, while the separa­
tion along the field is determined by the length K~ 

and increases with weakening of the binding force. 
We now consider the various types of interaction. 

We also limit ourselves to the consideration of the 
lowest Landau level n = 0, where 

l'l>oM(R.L) I'= (2n).' 2MMJ)-' ( ~.L )'M exp{ -4 ( ~.L)} (1.13) 

Let y(R) be described by the amplitude y 0 with radius 
of action a. For the short range potential a« A, 
which can simulate the deformation electron-phonon 
interaction, we can set 

y(R) = -y,a'~(R), y(K) = -y,a', (1.14) 

and then, computing the integral in (1.11 ), we find 

(1.15) 

i.e., only bound states with zero angular momentum 
arise, and I Woo I ~ H2 • Actually, if we compute the 
integral in (1.11 ), without assuming the potential to be 
delta-shaped, but simply short range, then this inte­
gral will be proportional not to II/! oM ( 0) 12 ~ 6Mo, but to 
1 1/JoM (a) 12 ~ (a/ A )2M . This means that, there also exist 
bound states for M "'- 0, but the binding energy for them 
contains an extra order of smallness and depends 
strongly on the magnetic field: 

(1.16) 

For the long-range potential A « a « K-\ we obviously 
have 

+~ s y(R) 1"\jloM(R.t) l'dR ~ s dZy(R) lal. ~• ~ y,a. (1.17) 

In this case, 

IWoMI = my,'a'fli', (1.18) 

so that the binding energy is almost independent of M 
and H. 

In order to model the polarization electron-phonon 
interaction (which does not have a finite radius of ac­
tion a), we set 

y(K) = -y,/ K. (1.19) 

This yields 

(R)--~ 
Y - 2n'R'' 

l w 1_ my,' [r(M + •f,) ]' 
oM - 16n').' f(M + 1) 

(1.20) 

In this case, the dependence of the binding energy on 
field is the same for all M, i.e., I WoM I ~ H. For 
M » 1 with increasing M, the last factor in (1.20) de­
creases like M- 1 from the value 11 at M = 0; therefore, 
the levels cluster about the decay threshold with in­
creasing angular momentum. 

It must be noted that the levels of the bound states, 
which arise from the lowest Landau level n = 0, lie 
below the emission threshold of the optical phonon and 
therefore, in the absence of dispersion, are strictly 
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stationary if we do not take into account the scattering 
by impurities or acoustic phonons. This consideration 
does not apply to the levels which arise from the upper 
Landau zones n > 0, so that these levels are quasi­
stationary. The amount of broadening of these levels r 
depends on the relation between H~Jlt and HJ.~t· If these 

interactions are of the same order, then 1 W oM 1 ~ f3 4 

and r ~ {3 2 , i.e., r ;:p 1 W 1. If only H~ 2>t is significant, 
lll 

then I WI~ y2 and r ~ y2 , i.e., r ~I WI. The value 
of y is computed in the Appendix, for nonpolarization 
electron-phonon interaction for two-atom crystals of 
symmetry Td. Formula (A.5) shows that in this case 
y is an imaginary function, odd relative to permutation 
of q and q', in contrast with the real and even function 
(1.19). It is therefore necessary to pursue our analysis 
somewhat further, which is done in the next section. 

2. THE SPECTRUM OF BOUND STATES. GENERAL 
CASE 

If the matrix element y depends materially on both 
momenta q and q', then the Schrodinger equation in 
coordinate representation becomes integral in Q and, 
in contrast with (1.3 ), it cannot be reduced to an equa­
tion with the difference argument R. In this case it is 
more convenient to use the momentum representation 
for the phonons. Again, neglecting the dispersions of 
the phonons and limiting ourselves to states with a 
single phonon, we obtain the following Schrodinger 
equation: 

[ 2~ (p-~A(r) )' +liwo] 'l'o(q,r) 

d f 

+ ~ J (Z:) 3 Voo,(q, q')e-'l•-•'l• 'l'o,(q', r)= E'l'o(q, r). 

(2.1) 

We assume as above that the interaction is weak and 
does not mix Landau levels with different n. Being 
interested only in such bound states in which the elec­
tron is located at the level n = 0, we can represent 

'l',(q, r)= J dk,'IJ• ~(r.L) 'J)o(kxl q, z), (2.2) 

where if!kx( r 1 ) is the transverse part of the wave func­
tion of the level n = 0 in the Landau gauge. In the gen­
eral case considered here, when there is no axial sym­
metry, this gauge is more convenient, since it allows 
us to use the translational symmetry. Then 

1 ( e ) ' ( li' fJ' ) (2 3) 2m p-~A 'l'o(q,r)= -2m ~+E, 'l'o(q,r). • 

Substituting (2.2) and (2.3) in (2.1), multiplying by 
if!kx:(r1 ) and integrating over r 1 , we find the set of 
equations for the functions rp. If we use the expression 
for the integral over r 1: 

Jar.L'IJ•;(r.L)exp[-i(q.L -q.L')r.Ll'i'•'x (r.L) = IS(kx' -kx+ qx'- q.) 

xexp{ ~ !.'(q.-q/)(kx+kx')- A~ lq.L-q.L'I'}, (2.4) 

then the system takes the following form: 

li' a' dq' , {··z , ---'J)o(k.lq,z)+ ~J-)-v=,(q,q )exp ''" (q.-· q. )k. 
2m i)z' ~ (2n 3 

+ y"-'(q.- qx') (q.- qy')} exp{- ~2 lq.L- q~l'- i(q 11 - q,()z }· 

X <po,(k, + q.- q/lq', z)= W<po(k.lq, z). (2.5) 

We now make the substitution 

<j)o(kxjq,z) = exp (i'A'qukx)xo(k. + q,jq,z), (2,6) 

which also corresponds to 
<p.·(kx + q.- q.'i q', z) = exp {il.'q/ (k. + q.- q/) ho•(kx + q.jq', z). 

(2.7) 
It is now seen that the functions x enter into the equa­
tion with the same first argument kx + ~. on which, 
moreover, the kernel does not depend. Disregarding 
this unimportant dependence for the present, we obtain 
the following set of equations for the function xa(q, z): 

h' i)' dq' 
-z;~Xo(q,z)+ J;,J (Zn)' Vo,,(q,q') (2.8) 

X exp{- )..: I 'I.e- q~j' +-;.i.'(qx- q.') (q, + q/J} · 

X exp{- i(q11 - q11')z}x,•(q',z) = Wx.(q,z). 

The differential equation in z can be regarded as 
the Schrodinger equation for a shallow one-dimensional 
well. Therefore, for W < 0, we set 

x.(q,z) =x.(q)e-'1' 1, h'x'/2m= IWI. (2.9) 

Integrating, as in the general case f4J, over the region 
I z I < K- 1 near z = 0, we find the set of equations for 
the functions xa< q): 

li' ~s dq.L' , , 
-xx.(q.L, qu) + ""'-.l (2)'L •• ,(qu; q.Lq.L)x.,(q.L, qu) = 0, 
m ,, n (2.10) 

L .. ,(qu; q.Lq.L') = V('l.cqu, q.L'qu)exp {- ~'jq.L- q.L'I'} 

Xexp{ ~ A.'(qx-q.')(q.+q/) }· (2.11) 

In this set of equations, q11 is a parameter. The quan­
tity K should be found from the set (2.10) as the eigen­
value (with accuracy to within a factor) of the integral 
operator L; here K depends parametrically on q11 . 
To each eigenvalue K > 0 there corresponds a bound 
state. The parameter q 11 determines the total longi­
tudinal momentum of the electron+ phonon system, 
since the longitudinal momentum of the electron in a 
shallow well is of the order of 1 2mW 1112 and is small. 
The dependence of K on q 11 thus determines the de­
pendence of the binding energy on the total longitudi­
nal momentum. We note that the dispersion of this 
nature is lacking in the case of the model potential, 
for which y depends only on the momentum transfer 
q- q'. 

Each bound state is degenerate in the x component 
of the total momentum kx + ~ of the elementary exci­
tation, because, as is clear from the derivation, the 
functions xa( q, z) can be multiplied by an arbitrary 
function of kx + ~· This degeneracy has the same 
nature as the degeneracy of the Landau levels of the 
free electron in kx. We emphasize that the spectrum 
is not invariant relative to inversion of the longitudinal 
momentum of the excitation, since both time inversion 
and space inversion are absent from the problem. 

Let us now study in more detail the case of interac­
tion with polarized phonons in two-atom crystals with­
out a center of inversion, for which the matrix elements 
y are found in the Appendix. We first consider the 
longitudinal vibrations. Then, in accord with (A.ll ), 

(2.12) 
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i.e., the kernel is Hermitian for each q 11 • It is seen 
from (A.14) that the kernel is odd: 

(2.13} 

It is further seen from (A.5) and (A.7) that L in general 
does not vanish for q1 , q~- oo if 1 q - ql_l = const. 
Therefore, the kernel L does not have a Fredholm 
behavior at infinity and, although judging from its be­
havior on the diagonal as 1 q1 - ql_l - 0 it is a kernel 
with a weak singularity, [ sJ one can make only limited 
deductions on the spectrum of this kernel. Inasmuch 
as the kernel is not degenerate and is Hermitian in 
accord with (2.12), it has for each q an infinite number 
of eigenfunctions, and among the corresponding eigen­
values there are always some that are not equal to 
zero. The bound states correspond to positive K( q 11 ) 

> 0. In this connection it is very significant that it 
follows from the oddness of the kernel (cf. (2.13}) that 
if K ( q 11 ) is the eigenvalue of the equation with parame­
ter q 11 corresponding to the eigenfunction x ( q1, q 11 ), 

then -K( q 11 ) is the eigenvalue of the equation with 
parameter -q 11 , which corresponds to the eigenfunc­
tion x( -ql, -q 11 ). It is then clear that there exist posi­
tive K corresponding to bound states; in particular, 
such states with q 11 = 0 always exist. 

Unfortunately, because of the non-Fredholm charac­
ter of the kernel, it is not possible to draw definite 
conclusions on the number of different eigenvalues and 
on the structure of the spectrum. Since Eq. (2.10) is 
two-dimensional (in the plane of q1 ), its eigenfunctions 
should be determined by two quantum numbers. There­
fore the spectrum of values of K can in principle be 
both discrete and continuous (in the latter case, K 

varies continuously as a function of the additional quan­
tum number). 

The dependence of K on H can be found from con­
siderations of dimensionality. It is seen from (A.5) and 
(A.7) that yl is a homogeneous function of minus first 
degree in q. Therefore, if we transform in (2.10) to 
the nondimensional momentum Xq and divide the equa­
tion by y~, it then becomes clear that the quantity 
ti2 K X/mx~ must be the eigenvalue of the nondimensional 
kernel, which contains the single parameter xq 11 • It 
then follows that the characteristic scale of momentum 
in the dispersion law is X -1 and the characteristic bind­
ing energy is 

I WI ~ m(y,')'/ h''A'. (2.14) 

Comparison of (2.14) and Eq. (1.20), obtained by means 
of the model potential (1.19}, shows that both the order 
of magnitude and the dependence of the binding energy 
on H are in agreement. However, the mechanism of 
producing this result is different in the two cases. The 
transition to the model potential is obtained if we 
formally set pl = const in place of (A.10). Then Eq. 
(2.10), after separation of the angular variable and 
completing of the Laguerre transformation, (SJ is 
solved exactly and leads to the results of the previous 
section. Here it is important that the effective Hamil­
tonian is obtained as the matrix element that is diagonal 
in M. On the other hand, for an odd potential (A.10), 
the matrix elements diagonal over M are annihilated 
and the binding appears due to the elements that are 

nondiagonal in M, i.e., due to the mixing of states with 
different M. 

It is not difficult to see that completely analogous 
arguments are applicable to interactions with trans­
verse phonons. It is only necessary to transpose a 
along with the transposition of q1 , and along with the 
substitution q1 - -q1: to make the substitution 
a- -a. The homogeneity of the kernel obviously oc­
curs if, in addition to (A.13), we assume that the polari­
zation vectors eaq are identical for all parallel q of a 
single direction. 

3. DISCUSSION OF THE RESULTS 

We begin with a general remark. Bound states that 
arise as the result of quadratic interaction Hi~t have 

certain differences from those which arise from Hi~t' 
and have been considered in(l,2l. It can be understood 
in the following way, that a phonon participates in them 
that was previously in the crystal, while in the case 
considered earlier, a phonon participates which could 
be emitted by the electron itself. A reflection of this 
circumstance is found in the fact that the bound states 
which arise from linear interaction are found as poles 
of the single-particle (electron) Green's function, (1,2] 
while the bound states considered in the present work 
are found only as the poles of a two-particle (electron 
+phonon) Green's function. In other words, these 
bound states do not have any singularities in the elec­
tron density of the states for T = 0. A great many 
parameters of states of both types, such, for example, 
as the dependence of the binding energy on the magnetic 
field, also differ significantly from one another. 

The fundamental question which remains to be dis­
cussed is the magnitude of the effect. We begin with 
unpolarized optical phonons. The potential energy of 
the electron in the field of a deformed lattice can be 
written as 

U(r) = U<0 (r) + u<•>(r) + ... = D.(r)i; + ~,(r)t + ... , (3,1) 

where 1: = u/ d is the dimensionless displacement of 
the nuclei. Generally speaking, the coefficients have 
atomic orders of magnitude: D1, D2 Rl D Rl e2/d Rl10 eV. 
However, D2 can be anomalously large if there are 
nearby bands at a distance t:.. : it then follows from 
ordinary perturbation theory that D2 Rl D2/ t:... As has 
been noted in the Appendix, in an estimate of the con­
tribution of the term u< 1l, it is convenient to exclude, 
by a canonical transformation, those terms which are 
linear in l:. Inasmuch as the energy changes by tiwo in 
a change in the number of phonons by unity, we have in 
place of ut 1) the operator I;Dl: with D Rl D2/tiw 0 , 

Therefore, lJI 2l should be taken into account along with 
u< 1) only in the presence of nearby bands with t:.. Rl tiw 0 , 

It must be kept in mind, however' that frequently u< l) 

= 0 from symmetry considerations, while u< 2l ;!! 0 
always; under such conditions, the role of u< 2l 

naturally increases. 
We now proceed to polarized phonons. As shown in 

the Appendix, the transverse vibrations, which do not 
interact with the electrons in the linear approximation, 
create a macroscopic electric field in the nonlinear ap­
proximation, the potential of which field is determined 
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by Eq. (A.4). As a result, bound states of the electron 
are produced with transverse optical phonons, lying 
substantially below the bound states with the participa­
tion of longitudinal phonons. It is well known [7J that the 
additional term cl> ( E, w). determines the nonlinear op­
tical characteristics of the medium in the range of fre­
quencies below the electron transitions. Using experi­
mental data on the coefficient of frequency doubling and 
the electro-optical effect, we could in principle deter­
mine the constants A, B, C, D. Such an attempt was 
made for CdTe in raJ. However, the indeterminacy in 
the signs of some of the experimentally determined 
coefficients, and also the current low level of accuracy 
of the experiment allow us to determine these constants 
only with an error of several times the size. Inasmuch 
as they enter into the binding energy in quadratic form, 
the possible error in W is unavoidably large. At the 
same time, from symmetry considerations, they can be 
estimated as the inverse atomic field ( e/d2t\ which, 
for d ~ 5 x 10-8 em, gives A, B, C, D ~ 10-10 m/V 
~ 3 x 10-6 cgs units and correspond in order of magni­
tude with the experimental data for nonlinear suscepti­
bilityf9J of semiconducting crystals. If we assume 
m = 0.1 mo, H = 100 kOe, hw-o = 0.03 eV, we obtain 
W = 10-3 hwo which is clearly outside the possibilities 
of observation. However, it must be kept in mind that 
such an estimate is extremely rough; 1> at the same 
time, an increase of the constant y 0 by an order of 
magnitude, which is entirely possible for a "lucky" 
crystal, gives W ~ 10-1 fiw 0 , which is easily observable. 
Therefore, we can hope that the bound states can be ob­
served for favorable values of the parameters. 

The contribution to the interaction operator contain­
ing the operators b'b• and bb can be obtained entirely 
analogously to (A.4). The interaction constants are 
close to (A.6). These terms should lead to pinning in 
experiments of the type described in flOJ. Therefore, it 
is expedient to seek the pinning due to the transverse 
phonons at the frequency 2wt· Evidently, pinning can 
also appear at the frequency wt + wz, due to crossed 
interaction terms. The case is also possible in which 
the linear interaction of the electron with a definite 
group of phonons is unpolarized, but the quadratic in­
teraction is polarized. This can occur, for example, in 
atomic crystals, where the charge on the individual 
atoms arises only as the result of deformation and is 
of the order of eu/d. In this case, as can be shown, 
Yo~ fiwod 2 ; this agrees with the estimate obtained 
above for polarized transverse phonons. 

We thank V.I. Matsaev for discussion of a number 
of mathematical problems. 

APPENDIX 

THE HAMILTONIAN OF POLARIZATION ELECTRON­
PHONON INTERACTION 

If the interaction H~ 2 >t has a polarization character, In 
i.e., if it is produced by macroscopic electric fields, 

1>How great the error can be in such a formal estimate is easily 
understood if we note that the analogous estimate for the Frohlich 
coupling constant gives a~ (e2/d hw0 )y, ~(M/mo)114 -10, while the 
experimental values for different crystals give a~ w-2 to 5. 

then it can be expressed in terms of the nonlinear op­
tical characteristics of the crystal in a way similar to 
that for the linear interaction, where it is expressed in 
terms of the linear optical characteristics. For this 
purpose, we use the nonlinear generalization of the 
Born-Huang theory,f 11l which adds to the density poten­
tial used there (which is quadratic relative to the dis­
placement of the sublattice w and the electric field E) 
the "anharmonic" terms c1> ( E, w) with higher powers 
of w and E. For realization of this program, we write 
w = w0 + W 1 and E = E0 + E 1

, where w0 and E0 are the 
displacement and the corresponding field for cl> = 0 and 
W 1 and E 1 are small corrections which are due to the 
"anharmonism," It is obvious that w0 and E0 contain 
a time dependence with the frequencies of the longitudi­
nal and transverse oscillations wz and wt. and w' and 
E1 are their combinations and harmonics. If we intro­
duce the potential ~ of the field E1

, we can then calcu­
late the amplitude of the potential with frequency w 
and wave number K, which will have the form 

1 4n [ a b a J' K (A 1 ) <p.,K=-i-- --tll(E,w}+-----tll(E,w) -. • 
e(w) aE w<'- w' aw "·" K' 

Here ~(w) is the dielectric constant which enters in[uJ 
and b = (f: 0 - .;;; 00 ) 112 wt/27T112 , the index 0 above the 
square bracket indicates that it must be calculated for 
w = w0 and E = E0 ; the subscripts denote the fact that 
the corresponding frequency-time component is taken. 
Here E0 can be expressed in terms of w0 according to 
the linear theory. 

The interaction Hamiltonian of interest to us is Hint 
= e~ 1 (r, t). In order to represent it in the general 
form, we need to expand w0 in the normal oscillations: 

1: ( 1i )''• w'= e.,i -- b.,(t)e'•'+ c c 2Vro. • ., 
(A.2} .. 

where e aq is the polarization unit vector, and assume 
the baq(tJ to be operators. In consideration of exam­
ples, we limit ourselves to "anharmonism" of third 
order in crystals of the Td class. Then, from sym­
metry considerations, 

tll(w, E) = Aro,'b-'w,w,w, +Bw,'b-'(w.w,)?, + ... ) 
+ Cw,'b-' (w.E.E. + ···) + DE.E;E,. (A.3) 

The dots indicate terms obtained by cyclic permutation 
of the principal axes x, y, z; The notation of the coef­
ficients is dictated by the simplicity of the final formu­
las. 

We first consider interaction with transverse pho­
nons only. For this, w0 is solenoidal and E0 = 0. We 
find those terms Hint which contain bb• and b•b; 
evidently, these correspond to the static field ~, i.e., 
w = 0. From (A.1) and (A.3), we find 

1 • 4n w? 0 K 
<Jlo.~t= -1--b' (A+B)[W],K-; 

e, · K' 
(A.4) 

Wx = wywz and so on. Expanding w, which enters into 
W, with the aid of (A.2), where a means two possible 
polarizations of the transverse waves, for example, 
right and left (a = ±) and wa = wt, and also returning 
to the coordinate representation, we find e~ 1 in the 
form (I}, where 

y.!.(q, ql) = y,'Jq- q'J-' P.:.(q, q'). (A.5) 

Here the constant is 
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y,'= (4:rt)'eliw, (A+B) 
Bo(Bo- Boo) 

(A.6) transformed in inversion in the following fashion: 

and the polarization factor 

P t ( ') (q-q'), ( • +. • 
aa' q, q = 2.1 'I ea,, :c ea'''· v ea •. v e11,,,, x) + ... 

'q-q 
(A.7) 

Similar considerations for interaction only with 
longitudinal phonons gives a formula similar to (A.5), 
where 

,_ (4:rt)'eliw1 Boo (A +B)· 
Yo- Bo(Bo-Boo) Bo 1 1 ' 

(A.B) 

A,= A- 2B e,- 8oo + c ( Bo- Boo)'' 
Boo E<» (A.9) 

B, = B- 2C e,- 8oo + D ( Bo- Boo )'; 
E.,.. Boo 

P'( ') (q- q'), ( • + • ) + q, q = 2i I q- q' I eq,xeq,,y eq,yeq,,x • 0. (A.lO) 

The following properties of the polarization factors 
guarantee the Hermitian nature of the interaction: 

P' (q', q) = P'(q, q') •, p;,a(q', q) = P:a,(q, q') •. (A.ll) 

It is convenient to choose the polarization axes so that, 
for longitudinal oscillations, 

(A.12) 

and for transverse ones, 

(A.13) 

where -a means circular polarization counter to the 
polarization a. Then the polarization factors can be 

P'(- q,- q') =- P'(q, q'), P~a,-a•(- q,- q') =- P:a.(q, q'). 

(A.l4) 
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