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It is shown that because of the presence of anisotropy, there occurs in a uniaxial paramagnet a nonvanishing 
constant component of longitudinal magnetization, induced by a transverse high-frequency magnetic field. 
This occurs even in the absence of a longitudinal constant field. The dependence of the magnetization on the 
amplitude and frequency of the alternating field is investigated. 

IT is well known that if the interaction of the paramag
netic ions with the crystalline field is much larger than 
the spin-orbit interaction, then a paramagnet can be 
described quite well by means of an effective spin 
Hamiltonian(!]. When the crystalline field has axial 
symmetry (a uniaxial crystal), the effective spin 
Hamiltonian for an individual paramagnetic ion can be 
written1 > 

(1) 

where a is the anisotropy constant, g 11 is the longitudinal 
g-factor, /J. is the Bohr magneton, Sz is the operator of 
the projection of the spin along the anisotropy axis, and 
H is the external magnetic field, directed along this 
axis. In the linear approximation, a weak alternating 
transverse field affects only the components of the 
magnetization transverse to the anisotropy axis. In this 
case the high-frequency magnetic susceptibility tensor 
is described by the well known resonance formulasC 1J. 
Here we shall consider the effect of a transverse alter
nating magnetic field on the magnetization along the 
chosen axis, not assuming smallness of the field 2 >. 

Let the paramagnet be in thermodynamic equilibrium, 
which is described by the Gibbs distribution Po for a gas 
of particles with the Hamiltonian (1). Then at the instant 
t = 0 an alternating magnetic field h 
(h0 cos wt, -h0 sin wt, 0) is applied, and the behavior 

I of the system for t > 0 is described by a density matrix 
p(t) that satisfies the equation 

iltap I at = [J'G, P l (2) 

with the Hamiltonian 

J'G =aS,'- guJJ,HS,- gJ.JJ,ho(S. cos cot-s. sin cot) (3) 

(g1 is the transverse g-factor). What interests us is the 
longitudinal magnetization, which is determined by the 

t>we neglect interaction between the paramagnetic ions. This, in any 
case, is correct for magnetically dilute crystals that are obtained by 
replacement of some of the diamagnetic ions by paramagnetic. For 
example, in the crystal K2Zn(S04) 2 ·6H2 0) in the zinc ion znH may 
be replaced by the copper ion Cu2+. 

2> At sufficiently low temperatures and at sufficiently high frequency CJ> 

of the alternating field, the condition CJ>T,P> 1 is satisfied, where r,P is 
the spin-phonon relaxation time. The effect considered below becomes 
noticeable at a temperature T::; a""' I °K. At such a temperature. 
r,P -10-2sec, so that the condition CJ>T,P> 1 is satisfied even at 
comparatively low frequencies. We suppose hereafter that this 
condition is fulftlled; this permits us to disregard spin-phonon 
interaction. 

mean value of the operator Sz ({Sz) = Sp PSz). We go 
over to a rotating system of coordinates by means of the 
unitary transformation 

U = exp (icoS,t). (4) 

The corresponding density matrix pis connected with p 
by the relation 

ll = u-•pu. (5) 

From (2), (4), and (5) follows the equation for p: 

ihiJp I at= [af, lll. (6} 

:fi =aS,'- t'!H·S,- h,S., (7} 

where D.H = H- hw. Here and hereafter we assume g 11 1J. 
= 1 and g1 1J. = 1. In transformation to the usual dimen
sions, it is necessary to multiply Hand D.H by g 11 1J., 
ho by g1 1J.. 

Since the Hamiltonian (7) does not contain the time 
explicitly, the solution of equation (6) that reduces at the 
initial instant to the Gibbs distribution Po has the form 

ll = exp (-i31Jtl h) Po exp (iJMt I h). (8) 

Hence, by taking into account that the operator (4) com
mutes with Sz, we find 

<S,) = Sp [exp (id'Gt I h )S, exp (-wit I h) p,]. (9) 

The further calculations are carried out for spin 
unity. We assume that the results thus obtained are 
qualitatively retained for an arbitrary spin greater than 
one half3 >. The obtaining of quantitative results for the 
general case involves great computational difficulties. 
We choose as a complete set the eigenfunctions of the 
operator .10: 

In a representation in which the matrix Sz_is diagonal, 
the components of each of the functions zpu> satisfy the 
system of equations 

(a+ t'!H)tjl~~l- 2-'i•h01Jl0(<) = E(i) 'Jl~':, (10} 

- 2-'l•h, ('I'~?+ 'I'• <•>) = E<•> tJl,<•>, 

- 2-'l•h,tjl,w + (a - t'!H)tjl,<'> = E<•> 1Jli0 • 

3>For S= 1/2, the anisotropy-energy operator reduces to the unit 
operator. 
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Hence is obtained the equation for the eigenvalues of 
E = Cl!- E: 

~l'- ae'- (h,' + ( 1\H)')e + a(L\H)' = 0. (11) 

The density matrix Po in the case under considera.tion, 
S = 1, can be described in the form 

Po= I+ S,e-~· sh ~H + S,'(e-~• ch ~H- 1). (12) 

Then 

' 
(S,) =Z-' [ (e-·'"ch~H -1) ~ (S,),;(S,'),cosw,;t 

iJ::::ol 

{13) 

+e-'"shBH· t (S,),;'cosw,;t ]. 
i,j=1 

Explicit expressions for the matrix elements and fre
quencies that enter in {13) can be found only in limiting 
cases. But the longitudinal magnetization, averaged over 
a time long in comparison with the characteristic per
iods, can be calculated for arbitrary values of the 
parameters Cl!, ho, and AH. From (13) we find 4 > 

a =<S,) =Z-• [<e-••ch~H ~ 1)t (S,),,(S.')d- c'"sh pH. t (S,) .. '] 
1=1 l=l 

(14) 

where the bar means a time average. The matrix ele
ments that enter in (14) are expressed as follows in 
terms of the components of the wave functions ¢<i>: 

(S,)" = (.p/'l)' -- ('IJ~:') ', (S,')" = ('!J/'')' + ('IJ~:J)' = 1- ('IJ,<<J) '. 

If we use the orthogonality and normalization relations 
for the functions ljJ<ll, 

.pi') ljJ~t) + .pi') .p~'' + '!Ji'' .p~') = .S,m, l, m = - 1, 0, 1 

we can obtain the following expression: 

a = 2z-• { ( e-'" ch ~H- 1) [ .p,<•J 'IJ,<•J (.P-~:' .p~',>- 'IJ;tl .p~'J ) 

+ .p!'' .p!') (.p~1 'IJ~; -.p;'' .p,<'') + '!Jo(3 )1jlo( 1 ) (ljJ~~J 'IJ~:'- 'IJ,''l.p/'J) J 

+ e-•• sh (:lH[ 1 - ( 'iJ;tJ .p,''J- 'IJ~:J ljJ~:')'- ( 'IJ,<•J .p;•J- ljJ~:J .p~',>)' 
{15) 

Each of the components of the wave functions 1/Jd> is 
a solution of the system (10) and cannot be expressed 
rationally in terms of the parameters Cl!, ho, and AH, 
because the characteristic equation (11) is cubic. From 
the system (10) and the normalization condition it follows 
that -.,,<•J <•> 

.p~·: == h, 'f ljJ (i) - h, ::--.p'--,--
}'2 e, + t:.H ' 1 

- 1"2 e, - 1\H 

<<J , [e.'-(t:.H)']' 
(.Po ) = h,'[e.' + (1\H)'] +[e.'- (!::.H)']' 

Hence it is clear that the right side of (15) is a rational 
symmetric function of the roots E1, E 2, and Ea of the 
characteristic equation (11) and, according to a well
known theorem of algebra about symmetric functions[ 2J , 
can be expressed rationally in terms of the coefficients 

•lEquation (14) follows from (13) under the condition that all the 
frequencies wii are different from zero for io;ioj; that is, in the absence 
of multiple roots of equation (II). It can be shown that this is always 
so except in two cases: h0 =AH=O and ho=O, !::.H= ±a. These cases 
we shall discuss separately. 

of equation {11). As a result, we obtain the following ex
pression for the magnetization of the paramagnetic ion: 

( L(a,h,,t:.H)) e-••ch~H-1 2a!::.Hh,'[h,'-8(t:.H)'] 
a= a, 1 - D(a, h,, t:.H) + 2e •• ch ~H + 1 D(a, h,, t:.H) (16) 

where 
2e-~•sh ~H 

a, = 2e ~· ch (:lH + 1 

is the static magnetization in a constant longitudinal 
field H, and where the polynomials Land Dare 

L = h,'{4a'(t:.H)' + a'h,' + 4[ (!::.H)'+ h,'] '}, {17) 
D = 4(~H)' [ (M)'-a']'+ h,'[12(t:.H)' + 12 (M) 'h,' 

+ 20(L'.H)'a' + h,'a' + 4h,']. 

We notice that the polynomial D coincides with the 
discriminant of equation (11). From the expression (16) 
for a it is seen that the first term, which is proportional 
to a0 , vanishes with H, whereas the second remains 
finite even for H = 0. Hence it follows that for Cl! -;e. 0, 
there exists a possibility of longitudinal magnetization 
of a paramagnet by a high-frequency magnetic field 
polarized in a plane perpendicular to the anisotropy 
axis; for H = 0 we have 

a= e-~·-1 2at:.Hho'[h,'-8(1\H)']. (18) 
2e-•• + 1 D (a, h,, t:.H) 

From (17) and (18) it follows that a for H = 0 is an odd 
function of AH. Furthermore, as is seen from (18), 
(] changes sign at AH = ±h0/2-l2. It can be shown that 
this result is retained for arbitrary spin, at least if Cl! 
is sufficiently small. Since (] vanishes both for ho = 0 
and for ho ="", there is a value of the amplitude for 
which a reaches a maximum. This is true also of the 
dependence of (] on AH . 

If the amplitude ho is small in comparison with AH 
or Cl!, then from (18) we find 

r~• - 1 4aho' t:.H 
a = -:;2:-e---;;,::-. +-:-1,.,-;-( (;-:t:.---;;H-;:-)72 ---a-=':-::-)' 

an expression that can be obtained directly by means of 
perturbation theory. But if the difference (AH)2 - Cl! 2 is 
small, which corresponds to a transition frequency in 
the paramagnei3J, then perturbation theory with respect 
to ho is inapplicable, and the result depends on the order 
of the approach of ho to zero and of AH to ±Cl! (see foot
note 4). If initially ho - 0, then, of course, a - 0. 
Therefore we consider the case in which AH- Cl! and ho 
is small, using perturbation theory for the case of de
generacy. The following result is obtained: 

a= e-•• -1 { 1-- costhoi2 

2e ~· + 1 2 
ho 2 } ("Sa") (17-costh,)'2) 

(we have set h = 1). For t « 1/h0-l2, we find from this 
that (] ~ hg, while for t » 1/ho-12 we get, as the result 
of the time-averaging, 

1 e-•• -1 
a = 2 2e-'" + 1 + 0 (h.')· 

This means that for AH = ±Q!, a high-frequency field of 
arbitrarily small amplitude produces, after a sufficiently 
long time, a finite value of the magnetization, which at 
T = 0 is equal to 1/ 2 • There is also degeneracy in the 
case that AH and ho approach zero. For AH << ho << Cl!, 
we have 
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In conclusion, we present exact expressions for the 
transverse components of the magnetization in the 
special case 6-H = 0, with arbitrary values of the other 
parameters. For 6-H = 0, as is seen from (10) and (11), 
the eigenvalues and eigenfunctions of the Hamiltonian 
(7) can be found explicitly. As a result, the following ex
pression is obtained for the cyclic component of the 
transverse magnetization: 

(S+) ""' (S,) + i(S;) = 2Z-'e-•m sin cp sin Qt 
X[(i-e-~"ch~H) cosq>sin!Jt+ie-~"sh~Hcos (at/2)], (19) 

where 

Here, as also above, we set h = 1. For small values of 
the amplitude, the transverse components of the magne
tization are linear with respect to ho, as they should be, 
whereas the longitudinal component is quadratic. 
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